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Problem with Aperiodic Functions:Problem with Aperiodic Functions:
Periodic Mirroring of FunctionPeriodic Mirroring of FunctionPeriodic Mirroring of FunctionPeriodic Mirroring of Function

We have seen that any periodicperiodic functionfunction can be expressed by a FFOURIEROURIER seriesseries, i.e. an infinite sum
of harmonicharmonic functionsfunctions. The periodicityperiodicity is part of the formulation: the sine and cosine functions are
periodic by nature, and so any sum of them is per force periodic, too. We could, however, add
zeros after a non-periodic signal to achieve a kind of quasi-nonperiodicity. Still, after TP time
units fictitious mirror images would be created If however we would let T approach infinity

( )

units fictitious mirror images would be created. If, however, we would let TP approach infinity
(TP), then the influence of the periodic extensions converges to zero. The FOURIER series
becomes the FFOURIEROURIER transformationtransformation.
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Starting Point: Fourier SeriesStarting Point: Fourier Series
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We start with the FOURIER series in sine/cosine formulation:
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aNow we extend the sum to also encompass the
term for n = 0, i.e. Ω0 = 0:
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Definition of the Frequency IncrementDefinition of the Frequency Increment
The spectrumspectrum of the FOURIER coefficients is a lineline spectrumspectrum: we have values for an and bn at
discrete frequencies Ωn. The spectrum is not defined between these discrete points. The
frequencies Ωn are spaced equidistantly with a constantconstant frequencyfrequency incrementincrement ΔΩΔΩ.
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Introduction of the Frequency IncrementIntroduction of the Frequency Increment
FOURIER formula:

2
a)]tsin(b)tcos(a[)t(P 0

0n
nnnn 





FOURIER formula:
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We substitute an and bn by the FOURIER integrals where we substitute 2/TP by ΔΩ:
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Now we let TP approach infinity. As TP becomes infinitely large, so ΔΩ becomes infinitely small, i.e it becomes a
differential quantity: ΔΩ becomes dΩ. The formerly discrete spectrum becomes a continuouscontinuous spectrumspectrum. The
discrete sum over all Ω becomes an integral over all frequencies between zero and infinity.discrete sum over all Ω becomes an integral over all frequencies between zero and infinity.

The constant term in the series for P(t) vanishes since the integral over the time domain gives a finite value
which is multiplied by the quantity dΩ which is infinitely small:
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From the FFrom the FOURIEROURIER Sum to the FSum to the FOURIEROURIER IntegralIntegral

 


2/T2/T
1

pP

The frequency increment ΔΩ does not depend on time and can be extracted from the integrals:
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The sum becomes an integral in the limit case where ΔΩ becomes dΩ (Tp approaches infinity).
The discrete FOURIER coefficients an and bn are now continuous functions since the gaps in the
discrete line spectrum shrink to zerodiscrete line spectrum shrink to zero.
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We re-introduce the now continuous FOURIER coeffecients:
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FFOURIEROURIER TransformationTransformation

spectral domain  time domain (FOURIER synthesis)
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[a(), b()]: FOURIER transform of the original function P(t).
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Complex FComplex FOURIEROURIER TransformationTransformation

spectral domain  time domain
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cP(): FOURIER transform of the original function P(t)
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Example: Rectangular ImpulseExample: Rectangular Impulse

P(t)
max. value: P0

Analytical determination of the FOURIER transform:
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FT for the Rectangular ImpulseFT for the Rectangular Impulse
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Inverse Transformation into the Time DomainInverse Transformation into the Time Domain
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inverse FOURIER transformation
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The inverse transformation can only be done numerically since there is no analytical expression
for the original function which is valid for the whole time domain. We choose a fixed value for t
and calculate the integral over the ‘entire’ frequency range, choose another value for t and repeat
the numerical integration. Each data point of the time signal requires the evaluation of an
integral. We have set ‘entire’ in inverted commas since the integration algorithm requires a
numerical value for the integration boundary. This value can be large, but it is still finite. We
cannot integrate over the entire frequency range but only over a range [ Ω : +Ω ] which wecannot integrate over the entire frequency range but only over a range [-Ωmax: +Ωmax] which we
consider relevant.

The quality of the solution is determined by 3 parameters:
• the integration algorithm (here: trapezoidal rule)• the integration algorithm (here: trapezoidal rule),
• the integration boundaries, and
• the size of the frequency steps.
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ΩΩmaxmax = 10.0 rad/s, = 10.0 rad/s, ΔΩΔΩ = 0.01 rad/s= 0.01 rad/s
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ΩΩmaxmax = 50.0 rad/s, = 50.0 rad/s, ΔΩΔΩ = 0.01 rad/s= 0.01 rad/s
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ΩΩmaxmax = 100.0 rad/s, = 100.0 rad/s, ΔΩΔΩ = 0.01 rad/s= 0.01 rad/s
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ΩΩmaxmax = 1000.0 rad/s, = 1000.0 rad/s, ΔΩΔΩ = 0.01 rad/s= 0.01 rad/s
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Finite Frequency Increment Finite Frequency Increment ΔΩΔΩ
We have integrated the frequency range with a finite
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We have integrated the frequency range with a finite
frequency step ΔΩ. The frequency increment is directly
related to the period TP so that a finite ΔΩ automatically
implies also a finite TP.
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FFT: FFFT: FASTAST FFOURIEROURIER TTRANSFORMATIONRANSFORMATION

A calculation of the FOURIER decomposition or synthesis via numerical integration is extremely
time-consuming as we have seen by running our little test programs. In 1965 there was
published a landmark paper on the numerical computation of FOURIER series by a specialpub s ed d p pe o e u e c co pu o o OU se es by spec
algorithm, the FFTFFT or FFASTAST FFOURIEROURIER TTRANSFORMATIONRANSFORMATION, which is incredibly fast compared to
numerical integration. This paper is one of the most important papers ever published in
numerical mathematics.

J.W. COOLEY & J.W. TUKEY 1965:
“An Algorithm for Machine Calculation of Complex Fourier Series”“An Algorithm for Machine Calculation of Complex Fourier Series”

• A recursive algorithmrecursive algorithm for the FOURIER transformation of discrete samples.
• The FOURIER transform is approximated by a discrete FOURIER series.pp y
• The number of sample points must be a power of 2.
• Same algorithm works for FOURIER decomposition (FFT) and synthesis (IFFT).
• Time signal is periodically repeated after the sample length.g p y p p g
• FOURIER transform is mirrored with respect to the NYQUIST frequency.
• Algorithm not readily understandable by the average user – black box procedure.
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FFT: Black Box ApplicationFFT: Black Box Application

time signal:
2n real sampling points

discrete FOURIER transform:
2n complex values

BLACK BOX
FFT procedure

p g p co p e v ues

p
time signal:

2n real sampling points
discrete FOURIER transform:

2n complex values

W h l f 22nn ll i ti t ll i t th FFT b d t 22nn ll t tt t ll tWe shove a sample of 22nn realreal inputinput valuesvalues into the FFT box and get 22nn complexcomplex outputoutput valuesvalues out
of it. A transformation, however, cannot create information, it can only change the form of
information. So if we have an original information content of 2n values (one real value for each
time instance), we cannot possibly get an information package of size 2·2n (two values for each), p y g p g (
complex frequency instance). Only half of the information of the discrete FOURIER transform can
be independent information, the other half must be implied in the first half.
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The NThe NYQUISTYQUIST FrequencyFrequency

The analytical FOURIER transform on the right shows a
convergence to zero as the frequency approaches
infinity. When performing an FFT, however, we will find
that the FOURIER coefficients are mirrored with respect
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Time/Frequency ResolutionTime/Frequency Resolution
p(t)

time domain

P(f) fny

frequency domain
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the frequency resolution Δfsample.
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 The time resolution Δtsample determines the

maximum frequency fsample (sampling frequency).
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Numerical StudyNumerical Study
test signal:
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Test ProgramTest Program
The signal contains fourfour harmonicsharmonics with frequencies of 1 Hz, 2 Hz, 5 Hz, and 20 Hz. We expect
the FOURIER transform to show distinct peaks at exactly these frequencies and no further peaks
at any other frequency. To avoid the complex nature of the FOURIER transform we plot they o e eque cy. o vo d e co p e u e o e OU s o we p o e
absolute value of the FOURIER coefficients which is equivalent to plotting the discretediscrete amplitudeamplitude
spectrumspectrum.

We set the sample length to Tsample = 50.0 s which yields a frequency resolution of Δf = 0.02 Hz.p g sample y q y
Then we vary the number of sample points, i.e. the sampling frequency. We start with a low
number of points and study the effect of the sampling frequency on the amplitude spectrum.
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f 2 54 H (128 i )
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f 20 46 H (1024 i )
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DiscussionDiscussion
When we sample the true time signal with only few points we create a numerical sample whichWhen we sample the true time signal with only few points we create a numerical sample which
bears little resemblance with the original signal. In particular the sample does not contain the
harmonics of higher frequencies. Instead we can observe certain low-frequency periodicities
which are not present in the original data but rather artefacts of the sampling process. These

tifi i l h i t d i th lit d t kartificial harmonics are captured in the amplitude spectrum as peaks.

With only 64 sampling points we get 4 peaks at [0.04 | 0.16 | 0.26 | 0.52] Hz. All these peaks are
artificial. The true harmonics cannot be captured since their frequencies lie beyond the
NYQUIST f Th tifi i l h i i i f th t h i hi hNYQUIST frequency. The artificial harmonics are mirror images of the true harmonics which
are mirrored from the high-frequency range into the low-frequency range.

An increase of Nsample to 128 leads to a halving of the time increment (well, not exactly, but
close enough for our purposes here) and a doubling of the NYQUIST frequency The peaks areclose enough for our purposes here) and a doubling of the NYQUIST frequency. The peaks are
shifted to [0.08 | 0.32 | 0.54 | 1.00] Hz. The last peak at 1.00 Hz is a true harmonic since now the
NYQUIST frequency is 1.26 Hz. A further increase of Nsample again changes the artificial
harmonics but not the true ones. With 2048 sampling points we have a NYQUIST frequency of
about 20.5 Hz so that all true harmonics are captured correctly. A further increase of Nsample is
not necessary: it would not change the amplitude spectrum below 20 Hz.

We see that the sampling frequency must be chosen high enough to avoid creating artificial
harmonics in the spectrum which would be erroneously interpreted as for instance
eigenfrequencies. More on this Topic in Lecture 14 “Experimental Techniques in Structural
Dynamics”.
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SummarySummary
The FFOURIEROURIER transformtransform FTFT is an extension of the FFOURIEROURIER seriesseries to nonnon--periodicperiodic signalssignals. With
the FT we transform a time signal from the timetime domaindomain TDTD into the frequencyfrequency domaindomain FDFD.
The FT is of fundamental importance for structural dynamics. We will use this technique in
th f ll i fi ldthe following fields:

Computation of time responses. In Lecture 9 we will develop an algorithm which yields the
time domain response via a prior transformation into the FD and later re-transformation
from the FD back into the TD. In the FD we are able to capture frequency-dependent
properties such as frequency-dependent damping or stiffness.

Analysis in the spectral domain. For stochastic loads it is often not possible to define loads as
time functions. Instead loads are given in the spectral domain by so-called auto-spectra and
cross-spectra. Then the entire analysis proceeds in the FD; we can extract from this solution
certain statistic properties of the structural response. More in Lecture 12.

Experimental structural dynamics. Experiments are often the only way to determine dynamic
properties such as damping and eigenfrequencies since we have only limited knowledge
regarding the structural properties such as member stiffness and elasticity of the supports. In
these cases we measure first a time signal from which we must extract the desired dynamicthese cases we measure first a time signal from which we must extract the desired dynamic
properties. The extraction process is performed in the FD so that the FT is an indispensible
tool when performing dynamic structural testing.
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