Wolfhard Zahlten

Lecture Series: Structural Dynamics

Mathematical Review 1: Complex Numbers

I: Algebraic Formulation

definition: imaginary number i : $i=\sqrt{-1}$

complex number: $\underline{\underline{Z}}=\mathrm{a}+\mathrm{ib} \Rightarrow \begin{aligned} & \text { a: real part } \operatorname{Re}(\underline{z}) \\ & \text { b: imaginary part } \operatorname{Im}(\underline{\mathrm{z}})\end{aligned}$

$$
\text { conjugate complex number: } \underline{\tilde{Z}}=\mathrm{a}-\mathrm{ib}
$$

Algebraic Operations

```
given: 2 complex numbers z_\mp@subsup{z}{1}{}=\textrm{a}+\textrm{ib}\mathrm{ 列 = c +id}
```

addition: $\underline{\mathrm{z}_{1}}+\underline{\mathrm{z}_{2}}=(\mathrm{a}+\mathrm{c})+\mathrm{i}(\mathrm{b}+\mathrm{d})$
multiplication: $\underline{\mathrm{z}_{1}} \cdot \underline{\mathrm{z}_{2}}=(\mathrm{ac}-\mathrm{bd})+\mathrm{i}(\mathrm{ad}+\mathrm{bc})$
division: $\left\lvert\, \underline{\underline{z_{1}}}=\frac{a+i b}{c+i d} \cdot \frac{c-i d}{c-i d}=\frac{(a c+b d)+i(b c-a d)}{c^{2}+d^{2}}\right.$

II: Polar Formulation

Algebraic Operations

multiplication:

$$
\underline{\mathrm{Z}_{1}} \cdot \underline{\mathrm{Z}_{2}}=\mathrm{r}_{1} \mathrm{r}_{2}\left(\cos \varphi_{1}+i \sin \varphi_{1}\right)\left(\cos \varphi_{2}+i \sin \varphi_{2}\right)
$$

$$
\underline{\mathrm{z}_{1}} \cdot \underline{\mathrm{Z}_{2}}=\mathrm{r}_{1} \mathrm{r}_{2}\left\{\left(\cos \varphi_{1} \cos \varphi_{2}-\sin \varphi_{1} \sin \varphi_{2}\right)+\mathrm{i}\left(\sin \varphi_{1} \cos \varphi_{2}+\cos \varphi_{1} \sin \varphi_{2}\right)\right\}
$$

$$
\mathrm{z}_{1} \cdot \mathrm{z}_{2}=\mathrm{r}_{1} \mathrm{r}_{2}\left(\cos \left(\varphi_{1}+\varphi_{2}\right)+\mathrm{i} \sin \left(\varphi_{1}+\varphi_{2}\right)\right)
$$

Multiplication becomes very easy in the Gaussian number plane: the magnitude of the product is equal to the product of the magnitudes, and the angle of the product is equal to the sum of the angles.

Algebraic Operations

division:

$\frac{\underline{Z_{1}}}{\underline{z_{2}}}=\frac{r_{1}\left(\cos \varphi_{1}+i \sin \varphi_{1}\right)}{r_{2}\left(\cos \varphi_{2}+i \sin \varphi_{2}\right)} \quad \underline{\underline{z_{1}}} \underline{\underline{z_{2}}}=\frac{r_{1}}{r_{2}} \frac{\left(\cos \varphi_{1}+i \sin \varphi_{1}\right)\left(\cos \varphi_{2}-i \sin \varphi_{2}\right)}{\left(\cos \varphi_{2}+i \sin \varphi_{2}\right)\left(\cos \varphi_{2}-i \sin \varphi_{2}\right)}$

$$
\frac{\underline{z_{1}}}{\underline{z_{2}}}==\frac{r_{1}}{r_{2}} \frac{\left\{\left(\cos \varphi_{1} \cos \varphi_{2}+\sin \varphi_{1} \sin \varphi_{2}\right)+i\left(\cos \varphi_{2} \sin \varphi_{1}-\cos \varphi_{1} \sin \varphi_{2}\right)\right\}}{\left.\cos ^{2} \varphi_{2}+\sin ^{2} \varphi_{2}\right)}
$$

$$
\frac{\underline{\mathrm{Z}_{1}}}{\underline{\mathrm{Z}_{2}}}=\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\left(\cos \left(\varphi_{1}-\varphi_{2}\right)+\mathrm{i} \sin \left(\varphi_{1}-\varphi_{2}\right)\right)
$$

III: Exponential Formulation

Euler's formula:

$$
\mathrm{e}^{\mathrm{i} \varphi}=\cos \varphi+\mathrm{i} \sin \varphi
$$

Proof:

$$
\mathrm{y}_{1}=\mathrm{e}^{\mathrm{i} \varphi}
$$

$$
y_{2}=\cos \varphi+\mathrm{i} \sin \varphi
$$

$$
\mathrm{y}_{1}^{\prime}=\frac{\mathrm{dy}}{1} \mathrm{~d} \varphi \mathrm{ie} \mathrm{ie}^{\mathrm{i} \varphi}
$$

$$
\mathrm{y}_{2}^{\prime}=\frac{\mathrm{dy}}{\mathrm{~d}} \mathrm{~d} \varphi=-\sin \varphi+\mathrm{i} \cos \varphi=\mathrm{i}(\cos \varphi+\mathrm{i} \sin \varphi)
$$

$\mathrm{y}_{1}^{\prime}=\mathrm{i} \mathrm{y}_{1}$

$$
\mathrm{y}_{2}^{\prime}=\mathrm{iy}_{2}
$$

Both y_{1} and y_{2} are solutions of the same differential equation. Therefore they must be identical and thus the Euler identity has been proven to be true.

Algebraic Operations

conjugate complex number:

$$
\underline{\mathrm{Z}}=\mathrm{re} \mathrm{e}^{\mathrm{i} \varphi} \Rightarrow \underline{\tilde{\mathrm{Z}}}=\mathrm{r} \mathrm{e}^{-\mathrm{i} \varphi}
$$

multiplication and division:

$$
\underline{\underline{Z_{1}} \cdot \underline{Z_{2}}=r_{1} r_{2} e^{i\left(\varphi_{1}+\varphi_{2}\right)}} \underline{\underline{Z_{1}}}=\frac{r_{1}}{\mathrm{Z}_{2}} \mathrm{e}^{\mathrm{i}\left(\varphi_{1}-\varphi_{2}\right)}
$$

Powers and Roots

n-th power of a complex number:

$\underline{\mathrm{Z}}=\mathrm{re}^{\mathrm{i} \varphi} \Rightarrow \underline{\mathrm{Z}}^{\mathrm{n}}=\left(\mathrm{re}^{\mathrm{i} \varphi}\right)^{\mathrm{n}}=\mathrm{r}^{\mathrm{n}} \mathrm{e}^{\mathrm{i} \varphi \mathrm{n}}$

A complex number is raised to the n-th power by raising the magnitude to the n-th power and multiplying the angle by n. Very easy in the polar and complex form.
Computing the n-th root is achieved by extracting the n-th root of the magnitude and dividing the angle by n.

roots of complex numbers:

$\underline{Z}=r e^{i \varphi} \Rightarrow \sqrt[n]{\underline{Z}}=\left(r e^{i \varphi}\right)^{\frac{1}{n}}=\sqrt[n]{r e^{\frac{i \varphi}{n}}}$

