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Idealization as a 2DOF-System
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Coupled Equations of Motion - V1
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absolute displacement of the damper
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Coupled Equations of Motion – V2
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Design Variables of the TMD

TMD is characterised by: md, kd, cd
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Problem:
How do we choose the design parameters for an optimum 
performance of the TMD? What is an optimum performance? 
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Why and how Does a TMD Work?

In the following we will derive, mathematically, equations which
allow us to design TMDs with desired properties. These equations 
and their graphic representations demonstrate the influence of 
certain parameters on the performance of TMDs, yet they do not 
answer really help us to understand on a non-mathematical level why 
a TMD works at all. So before we start the math, we will study a
simple example: harmonic resonantharmonic resonant excitation of the structure

ξ
=

2

1
V res,1

For resonance we have the maximum dynamic 
amplification which goes, if there is no damping, to 
infinity. So the question is: how does the addition of a 
very small mass change the dynamic behavior of the 
coupled system? We can solve the equation of motion in 
the time domain analytically and see what happens.
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Coupled System: Example

We study a structure with unit mass and an eigenfrequency of 
fs=1.0 Hz. The damper shall have a very small mass (µ=0.0001). 
Its eigenfrequency shall be identical to that of the structure (κ=1). 
We will compute the response in modal space, so we need to use the 
variant V1 with the FE degrees of freedom since the modal 
superposition method assumed the symmetry of the system 
matrices. Damping is set to zero for both structure and TMD.
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Eigenfrequency Analysis: Equations
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Eigenfrequency Analysis: Results
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Transformation into Modal Space
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Harmonic Excitation

)tsin(P̂)t(P Ω⋅=

We excite the structure with a harmonic load since we have a 
closed analytical solution. We are only interested in the 
stationary, long-time vibration. The load frequency Ω is chosen to 
coincide with the eigenfrequency of the structure without TMD. 
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Solution in Modal Space

mode 1:

mode 2:
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Solution for the True System

22mod,11mod, VV
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Summary

We had two initially separate undamped systems – structure and 
damper – with exactly the same eigenfrequencies. Under a fully 
resonant harmonic load both would be excited to infinitely large
amplitudes.

Now we connect them and get a coupled system with two degrees of
freedom. The eigenfrequencies of the coupled system change only 
very little since the damper mass is extremely small. The infinitely 
large dynamic amplification is reduced to two large values since we 
no longer have perfect resonance. Both mode shapes oscillate with 
the same amplitudes, but perfectly out of shape.

As a result the vibration of the system is completely eliminated since 
the two mode shapes cancel out, while the TMD is excited to large 
oscillations! Nature chooses to excite the small mass and let the 
large mass remain at rest.
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Eigenfrequencies

eigenvalue problem:
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The original single eigenfrequency of the system without TMD is
split into two distict eigenfrequencies.
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Eigenfrequencies as Functions of µµµµ
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The split of the eigenfrequencies grows more pronounced with
increasing mass of the TMD. How does the coupled structure

vibrate?
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Optimization

A TMD can only be optimized with respects to:

• a specific response:

• displacement

• velocity

• acceleration

• a specific load type:

• harmonic load,

• periodic load, ...
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Solution for Harmonic Loads
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Response for Harmonic Loads
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Behaviour of an Undamped TMD
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The oscillation of the structure becomes zero if the
damper has the same eigenfrequency as the load: ωωωωd = Ω.Ω.Ω.Ω.

The damping out of the motion has nothing to do with
damping in the sense of energy dissipation. The TMD has 
no damping at all!
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Response of the Structure
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Independently of µµµµ is the oscillation with the load frequency
completely damped out.
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Response of the TMD
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The mass ratio µ µ µ µ influences the response of the TMD. A small
TMD must produce large amplitudes in order to work.
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What is an Optimum Performance?

Naive design philosophy: The load frequency ΩΩΩΩ is given; 
then the damper is designed as having the load as 
eigenfrequency and we have absolutely no vibration in 
the structure. The mass of the TMD is chosen such 
that its amplitudes are limited to reasonable values.

This design is not good!! If the load frequency were to 
shift only a little bit or the TMD is not adjusted
perfectly, then the effectiveness of the TMD would fall 
off drastically.

Good design strategy: A compromise must be struck
between effectivness and safety. The TMD must
perform in a broad(er) band of frequencies with the
same effectiveness to minimize the system sensitivity.
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Observation 1: Common Points

fixed parameters: κκκκ = 1.0, µµµµ = 0.05, ξξξξs = 0.05
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Requirement 1: Symmetric Response
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The sensitivity is not
symmetric: the amplification

is more sensitive with
respect to positive rather
than negative deviations

from ηηηηtarget.

The robustness would increase if the sensitivity were not skewed. 
This can be achieved by requirering V1sa =V1sb. The resulting

equation yields a condition for the tuning ratio κκκκ:

The mass ratio m controls the
split of the eigenfrequencies and 
therefore the width between the

two peaks.
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Resonance Spectrum for κκκκopt

fixed parameters: µµµµ = 0.05, ξξξξs = 0.05, Kopt = 0.9524
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How to Find the Mass Ratio µµµµ

fixed parameters: ξξξξs = 0.02, κ κ κ κ = κκκκopt

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0

5

10

15

20

25

30

dynamic amplification V1s

frequency ratio η

µ = 1 %

µµµµ = 2 %

µµµµ = 3 %

µµµµ = 5 %

The plateau between the response peaks is widened by a larger 
µµµµ which increases the bandwidth of effectiveness. Common are

values of 1 % to 5 % of the modalmodal mass for µµµµ.
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Observation 2: Effect of Damping ξξξξd

The damping ξξξξd of the TMD lowers the effectiveness, yet also 
decreases the sensitivity.
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Requirement 2: Plateaulike Response
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The damping ξξξξd of the TMD lowers the effectiveness, yet also 
decreases the sensitivity.

To achieve an almost constant resonance curve between the points
A and B, we require that at an intermediate point C we have the

same amplification as in A and B!
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Optimum Damping ξξξξopt
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Observation 3: Overlarge Damping

An overlarge damping leads to a rigid coupling of the TMD to 
the structure and the response converges to that of an 
undamped structure. Overlarge damping must be avoided!
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Alternative Optimization

Criteria by Den Hartog:

• impose a horizontal slope in point A

⇒ damping ratio ξξξξa

• impose a horizontal slope in point B

⇒ damping ratio ξξξξb

• mean value of ξξξξa and ξξξξb is ξξξξopt
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opt
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Optimization of Other Parameters
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from: Christian Petersen „Schwingungsdämpfer im Ingenieurbau“, Maurer Söhne, 2001
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Optimization for Complex Structures

A complex structure has several modes which can be
excited at the same time. The load is not identical to 
the ones where analytical optimization criteria exist.

Apart from the amplitudes of the structure we must
also know the the amplitudes of the TMD. 

The optimization criteria allow a pre-design of the
TMDs. Afterwards a more advanced time-domain

analysis should be performed to compute the response
(displacements, velocities, accelerations) of the

coupled multi-mode TMD-structure system.

The time-domain algorithms should be able to model
discrete damping elements.


