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Static Problems

historical buildings: compact design philosophy

Scottish stone bridgeScottish stone bridge

Roman aquaeductRoman aquaeduct
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Dynamic Problems

Lighter structures are vulnerable to dynamic excitation

footbridge over the river Rhine
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Dynamic Vulnerability

In general: structures become vulnerable to dynamic
effects if their eigenfrequencies are low.

Eigenfrequencies are determined by the ratio of 
stiffness to mass. They are low if a small stiffness
is combined with a relatively large mass. Flexible 

structures can easily be excited.
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Typical Vulnerable Structures

• large-span bridges, e.g. the projected Messina Bridge

• light foot bridge, e.g. the Millennium Bridge London

• bell towers, especially with heavy bells inside

• high (guyed) masts

• light roofs, e.g. stadium roofs

• substructures, e.g. the cables and hangers in cable-
stayed and suspension bridges

• floors in industrial buildings where heavy machines
are working

• grandstands in stadia
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Typical Excitations

• wind excitation:

• buffeting
• vortex shedding
• aeroelastic self-excited forces, e.g. flutter

• human excitation:

• pedestrian excitation: walking, jogging, running
• crowd excitation: dancing, jumping

• harmonic and periodic excitations:

• bells ringing
• rotating machines
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The Phenomenon of Resonance

Resonance can occur for harmonic loads:

• The structure has an eigenfrequency ω,ω,ω,ω,

• The load has a load load frequency Ω.Ω.Ω.Ω.

The dynamic amplification depends on the ratio 
between ΩΩΩΩ and ωωωω. Non-harmonic loads do not have a 
single load frequency, so strictly speaking there is no 
true resonance. Any load history can, however, be 
synthesized in a Fourier series (periodic) or a Fourier 
transform (non-periodic), so that a load history can be 
said to contain harmonics with different frequencies. 
Any harmonic can then be resonant with an 
eigenfrequency.
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Resonance: Consequences

Many (not all) problems in structural dynamics are caused 
by resonanceresonance. The dynamic amplification can be very 
large (especially in cases of low damping) so that a 

sufficient strengthening of the structure is impossible. 

What to do?

• Avoid resonance by a design that is not primarily
concerned with stresses but with the eigenfrequencies.

• Isolate structure or excitation from each other.

• Reduce the amplitudes by the installation of TMDs
Tuned Mass DampersTuned Mass Dampers
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Example: Simple Footbridge Model

L

P(t): harmonic load

beam (footbridge) under near-resonant harmonic load

TD response: amplitudes too large!

Attempt to reduce 
vibrations by 

introducing a TMD with 
5% modal mass. The 
TMD contains no
damping element.
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What is an TMD?

A (small) mass is elastically coupled to 
the structure. The stiffness of the 
spring is chosen such that the 
eigenfrequency of the TMD coincides 
closely with the eigenfrequency of the 
mode to be damped out.

The effective range of the damper can 
be broadened by adding a viscous 
element.

Kd Cd

Md
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Tuning by Softening the TMD

KTMCS = 1.0 KTMD0

KTMCS = 0.98 KTMD0

KTMCS = 0.95 KTMD0

The efficiency of the TMD falls off sharply with decreasing
TMD eigenfrequncy
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Tuning by Stiffening the TMD

KTMD = 1.0 KTMD0

KTMD = 1.02 KTMD0

KTMD = 1.05 KTMD0

The efficiency of the TMD can be
increased noticeably by increasing

its eigenfrequency.
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Design of TMDs

We have observed by a numerical experiment that a 
small mass coupled to a structure can reduce the 

vibrations of the structure considerably.

We have also seen by experimenting with the TMD 
stiffness that the efficiency depends on the tuning 

of the TMD.

What we don‘t know now is a rational method of 
designing the TMD that gives the largest possible 
amplitude reduction while at the same being robust
and safe with respect to fuzzy structural and load 

parameters.

That will be covered in the following.


