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Overview 

• Maximum expected values 
• Solution in the spectral domain 

• auto-spectrum of the response 
• admittance functions 
• variance of the response 

• Example: wind loading 
• Outlook: a field of correlated load processes 
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Maximum Values 

• Within a finite time window we can calculate the maximum value. 
• There is no guarantee that there will not be a higher value outside the 
   time window. 
• There is no true maximum value; we can only determine a threshold 
   that will only be surpassed by a given probability. 

t

x(t)

time window 
max. value in window 

max. value in sample 
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Probability of Failure 

response resistance

failure zone 

resistance has fallen below 
the min. expected value 

response has exceeded 
the max. expected value 
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Maximum Expected Value 

The maximum expected value is not a true maximum but a boundary value that can 
be surpassed. The probability of exceeding this value, however, is known and can be 
defined by the engineer. The boundary value will be used as the design value that the 
structure has to withstand. 

p(x)

x
µx xmax 

xmax = µx + g·σx 

g: peak factor, depends on 
• probability of exceedance 
• probability density function 

accepted probability of exceedance 
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Peak Factor for GAUSSIAN Processes 
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GAUSSIAN PDF: probability of exceedance: 

∫
∞

=>
maxx

gaussmax dx)x(p)xx(P

general GAUSSIAN distribution: 

normalized unit GAUSSIAN distribution: 

x has N(µ,σ)-distribution 

y = (x-µ)/σ has N(0,1)-distribution 

x

xxy
σ
µ−

= xx yx σ⋅+µ=
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Procedure for Determining the Peak Factor 

                   Procedure 
(1) Choose Pbound 

(2) Determine ymax from the table so  
that P(y ≥ ymax) = Pbound 

(3) Transform to general distribution: 
xmax = µx + σx ymax = µx + σx g  

(4) Peak factor: g = ymax 

Pbound g 
5 % 1.645 
1% 2.33 

0.28 % 2.80 
0.23 % 3.5 
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Example: Probability of Exceedance 3 % 

Probability of exceedance: 3 % 

97.003.01)x( =−=Φ

from table 

96995.0)88.1x( ==Φ

89.1g =
on the safe side 

97062.0)89.1x( ==Φ

∫
∞−

=Φ
x

dx)x(p)x(
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Procedure for Design 
(1) Determine µ and σ of the design variable v. 
(2) Define probability Pbound. 
(3) Calculate peak factor g. 
(4) Calculate design value for v: vmax = µv + g ·σv 

Mean value: 
The mean value of the load leads to the mean value of the response. The dynamic 
response fluctuates about this mean. So the mean response can be calculated by 
a static analysis. 
RMS: 
The fluctuations of the load lead to the dynamic excitations. The closer the peaks 
of the load spectrum Sload coincide with the peaks of the admittance function, the 
larger the dynamic effects are! 

Open question: how do we find the standard deviation of the response? 
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Review: Response of an SDOF-System 

DUHAMEL integral for arbitrary loading: 

∫ ττ−τ=
t

0

d)t(h)(p)t(v

tsin
m
1)t(h ω
ω

= tsine
m

1)t(h d
t

d

ω
ω

= ξω−

h(t-τ): impulse reaction function, describes the influence of an 
            impulse which took place τ time units before time t. 

undamped case: damped case: 
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DUHAMEL Integral: Alternative Formulation  

∫∫∫ −=−−=ττ−τ=
=

=

=τ

=τ

t

0

0s

ts

t

0

ds)s(h)st(pds)s(h)st(pd)t(h)(p)t(v

∫
∞−

−=
t

ds)s(h)st(p)t(v

(a) Shift time lag from h to p: 

(b) Extend integration to negative time range: 

Substitution: st =τ− dsd −=τst −=τ

since h(s) = 0 for negative time values s 
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Step 1: Covariance of the Response 

∫
−

∞→
τ+=τ

2T

2T
2Tv dt)t(v)t(v

T
1lim)(R

∫ ∫∫
−

∞

∞−

∞

∞−
∞→ 











−τ+












−=τ
2T

2T
2Tv dtds)s(h)st(pdr)r(h)rt(p

T
1lim)(R

∫ ∫∫
−

τ+

∞−∞−
∞→ 











−τ+












−=τ
2T

2T

tt

2Tv dtds)s(h)st(pdr)r(h)rt(p
T
1lim)(R

Definition: 

Substitute time response by DUHAMEL integral: 

Incorporate the limes into the integration boundaries: 
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∫ ∫ ∫
∞

∞−

∞

∞− −
∞→ 











−τ+−=τ dsdrdt)st(p)rt(p
T
1lim)s(h)r(h)(R

2T

2T
2Tv

Re-order integrals with respect to t, r, s: 

Substitution in dt integral: 

urt =−

srust −τ++=−τ+

rut += dudt =

)sr(Rdu)sru(p)u(p
T
1lim p

2T

2T
2T

−+τ=−+τ+∫
−

∞→

Express dt integral as covariance function of load p: 
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Final expression for the covariance of the response: 

∫ ∫
∞

∞−

∞

∞−

−+τ=τ dsdr)sr(R)s(h)r(h)(R pv

Result 1: Covariance of the Response 

The auto-covariance function of the structural response can be computed directly from the auto-
covariance function of the load. The computation involves a double integral over the entire time 
domain from minus infinity to plus infinity. The structural properties (mass, damping, stiffness) 
enter the calculation via the impulse reaction function. That means that the knowledge of the 
response of a system to an impulse encompasses the full information regarding its dynamic 
properties. 
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Step 2: Auto-Spectrum of the Response 

Definition of the auto-spectrum: 

∫
∞

∞−

τΩ− ττ=Ω de)(R)(S i
vv

∫ ∫ ∫
∞

∞−

τΩ−

∞

∞−

∞

∞−

τ












−+τ=Ω dedsdr)sr(R)s(h)r(h)(S i
pv

Substitute covariance of the response by covariance of the load: 

wsr =−+τ
Substitution: 

srw +−=τ dwd =τ
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∫ ∫ ∫
∞
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∞
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∞
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=Ω dwdsdre)w(R)s(h)r(h)(S )srw(i
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)(S)(H)(S)(H)(H~)(S p
2

pv ΩΩ=ΩΩΩ=Ω
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∞

∞−

Ω−

∞

∞−

Ω−

∞

∞−

Ω ⋅⋅=Ω dwe)w(Rdse)s(hdre)r(h)(S wi
p

siri
v

Perform substitution: 

Re-order variables into 3 separate integrals: 

Interpret integrals as FOURIER integrals: 
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Mechanical Admittance 

)(S)()(S)(H)(S pvpp
2

v ΩΩχ=ΩΩ=Ω

The spectrum of the response can be directly obtained from the spectrum of the excitation by 
multiplication with the square of the absolute value of the FOURIER transform of the impulse 
reaction function. 
A function which transforms one auto-spectrum (input spectrum) into another (output spectrum) 
is called admittance function. In the present case we have the mechanical admittance which 
describes the admittance properties of the mechanical system. Since we know the impulse 
reaction function, we can easily derive the mechanical admittance by perform the FOURIER 
transformation analytically. 
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Admittance in General 

SYSTEM: 
admittance 

input spectrum output spectrum 

Example: aerodynamic admittance: 

spectrum: 
wind speed 

spectrum: 
wind forces 

cross section: 
• shape 

• surface roughness 
• ... 
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FOURIER Transformation of h(t) 

Definition of the FOURIER transformation: 

∫
∞

∞−

Ω−=Ω dte)t(h)(H ti

∫∫
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Ω+ξω−
∞

Ω−ξω− ω
ω

=ω
ω

=Ω
0

D
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D
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D
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m

1dtetsine
m

1)(H

Introduce h(t) and note that h(t) = 0 for t<0: 
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From a mathematical handbook:  
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FOURIER Transform H and Mechanical Admittance 

})2()1{(k
2i)1()(H 222

2

ηξ+η−
ηξ−η−

=Ω

The FOURIER transform H of the impulse reaction function h is identical to the complex transfer 
function of the oscillator under harmonic excitation! 

{ }2222
222

)2()1(k
1)H(Im)H(ReH

ηξ+η−
=+=

The mechanical admittance is identical to the square of the dynamic amplification V1 of the 
oscillator under harmonic excitation, divided by k2! The information of the response to an 
impulse, known for all time instances, is equivalent to the knowledge of the maximum response 
under harmonic excitation for all frequencies! 



University of Wuppertal, Institute for Structural Mechanics and Numerical Methods, Prof. Dr.-Ing. W. Zahlten ♣♣♣♣ page 22  

Example: Quasi-Stationary Model for Wind Forces 

B)(CqD D α=

Force model: 
                       variables: 
q: kinetic pressure 
ρ: density of air 
U: wind speed 
C*: aerodynamic coefficients 
B: invested length 

B)(CqL L α=
2

M B)(CqM α=

2U
2
1q ρ=

We look at the wind-induced forces on a unit strip of 
the bridge deck. The wind flow around the cross 
section creates a pressure distribution on the 
boundary. These pressures can be integrated to 
obtain forces: the drag force D, the lift force L and the 
moment M. All forces are distributed forces per length 
unit of the bridge deck. 

Their values depend on the wind speed and the shape 
of the cross section. The geometry of the cross section 
is captured by the three aerodynamic coefficients CD, 
CL and CM, which can be measured in a boundary 
layer wind tunnel. The size of the cross section is 
expressed by the length B. 
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Split into Static and Dynamic Effects 

UUU ′+=

FF)UUU2U(BC
2
1F 22

* ′+=′+′+ρ=

Total wind speed: mean value + fluctuating part: 

2
* UBC

2
1F ρ=

mean load: static deformation 

UUBCρUBρC
2
1UUBCρF *

2
** ′≈′+′=′

fluctuating load: dynamic deformation 

The fluctuating part has been linearized to allow a FD approach! 
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Aerodynamic Admittance 

Some thoughts on linear transformations: 

2

2Tx )(X
T
1lim)(S Ω=Ω

∞→

xy λ= )(X)(Y Ωλ=Ω

)(S)(S x
2

y Ωλ=Ω

wFwF SS χ=
Application to the present case: 

2
*Fw )UBC(ρ=χ
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Wind Spectrum of VON KÁRMÁN 

652

2
w*

w ))f409.8(0.1(
f4

f
S

+
σ

=
10

w

U
Lff =

Classic wind spectrum from literature: 

                         parameters: 
U10: mean wind speed at 10 m height 
Lw: integral length scale 
σw: turbulence of the wind, σw = Iw ·U10 

turbulence intensity Iw: 
• open ground: Iw = 18 % 
• suburb, wood: Iw = 31 % 
• city: Iw = 56 % 

∫
∞

=σ
0

*
w

2
w df)f(S

note! 
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Wind Spectrum of VON KÁRMÁN 
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Flow Chart of the Calculation 

input: 
wind spectrum Sw 

load 
spectrum SF 

displacement 
spectrum Sv 

output: 
rms of  

displacement σv 

aerodynamic 
admittance χFw 

mechanic 
admittance χvF 

integration: 

∫
∞

=σ
0

*
v

2
v df)f(S
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Spectra for the Wind Problem 
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Lw = 75.0 m 
U10 = 15.0 m/s 
Iw = 0.30 
U = 22.5 m/s 

k = 15791.0 (kN/m)/m 
m = 400.0 (to/m) 
ξ = 5 % 
L = 10.0 m 

m/s 4.4954df)f(S
0

ww ==σ ∫
∞

m/s 5.4UI 10ww =⋅=σ
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Spectral Approach and Time Domain Approach 

The auto-spectrum characterizes the stochastic process per se. The solution in the spectral 
domain therefore produces the response per se: one single calculation suffices to capture the 
entire response in the spectral domain in the form of the auto-spectrum of the response. From the 
auto-spectrum we calculate the standard deviation of the response and our analysis is finished. 

In the time domain we can only manifest the random process in realizations. There are special 
algorithms which generate realizations for a given process, i.e. for a given auto-spectrum. 

For such a realization we can calculate a realization of the response by a time history analysis, 
e.g. with a direct time integration. Each realization, however, contains only partial information 
on the underlying random process. Therefore it is not possible to base a design on the results of 
only one single realization: a second realization might give larger results. Instead we have to 
generate a whole batch of load realizations and calculate a corresponding batch of response 
realizations. We then perform a suitable statistic analysis of our batch of results and define design 
values according to some chosen probability of failure. 

For a computation of the wind response we typically perform 30 simulations. We find the design 
value by performing an extreme value analysis for the 30 individual extreme values. This is done 
by fitting an extreme value distribution, e.g. a GUMBEL distribution, into our computed 30 extrema 
and calculating from the fitted distribution the maximum expected value for a given probability 
of exceedance. 
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