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OverviewOverview

• General remarks

• Properties of a single stochastic process:
• statistic parameters

• stochastic properties in the TD

• stochastic properties in the FD

• Extension to fields of processes
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Deterministic and Stochastic ProcessesDeterministic and Stochastic Processes

Process: evolution of a time-dependent variable x(t)

Deterministic process:
The value at time t can be predicted 

from a given relationship or from the 

values of the previous time instances. 

Stochastic process:
The value at time t cannot be 

predicted with certainty. Only some 

properties of the process are known.
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Process and RealisationProcess and Realisation

Process:
The ensembleensemble of all possible 

measurements. 

One single measurement: realisationrealisation or 

samplesample of the process.

Knowledge about the process is gained by individual measurements. Each measurement differs 

from all others – the measurements are nonnon--repeatablerepeatable. The process (the ensemble of all 

measurements) itself can only be known partiallyknown partially by its realisations.

sample 1

sample 3 sample 2



University of Wuppertal, Institute for Structural Mechanics and Numerical Methods, Prof. Dr.-Ing. W. Zahlten ♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣ page 5

Classification of Stochastic ProcessesClassification of Stochastic Processes

• stationary/instationary:
In a stationarystationary process the characterising properties are time-independent 

within the time window under consideration.

• GAUSSIAN/Non-GAUSSIAN:
A GGAUSSIANAUSSIAN process has a GGAUSSIAN AUSSIAN probability density functionprobability density function.

• Ergodic/Non-Ergodic:
One single realisationsingle realisation represents, apart from numerical inaccuracies, the entire entire 

processprocess.

In the following:

Stationary, GAUSSIAN, ergodic processes. 
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ProbabilityProbability

In a discrete processdiscrete process, e.g. the casting of a die, we can assign a probability to each possible 

outcome. The probability of casting a 2 is exactly 1/6 for a perfect die. The assignment of a 

probability to a single-valued event is not possible for a continuous real processcontinuous real process x(t). 

Take e.g. the weight of chicken eggs. What is the probability of an egg having a weight of 80 

grams? To find out we measure 10000 eggs with a letter scales with an accuracy of 1 gram and 

find that 100 eggs weigh 80 grams, so we would assign the 80-gram event a probability of 

100/10000=0.01. Now someone presents us with a more accurate digital scales. We re-measure –

better scales, better results – with the new scales which has a finer accuracy of 0.1 grams and find 

that only 10 of the original 100 eggs “really” weigh in at 80 grams – the rest have 79.8 or 79.9 or 

80.2 or … grams. It was the limited accuracy of our first scales which erroneously assigned 

further 90 eggs the 80-gram weight. So our probability drops to 10/10000=0.001. 

If we were to repeat the weight testing with an even more accurate scales, we would find even less 

eggs with a weight of 80.0 grams. In the limit of an infinitely accurate scales we would not find 

even a single egg with exactly the target weight. Between two real numbers it is always possible to 

fit in an infinity of further real numbers. So makes no sense to assign a probability to the exact 

outcome of a real random process – that probability is zero. Instead we define the probability probability 

density functiondensity function.
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Probability Density FunctionProbability Density Function

Each possible value x of a random process x(t) is assigned a value p(x). The function p(x) is called 

probability density function PDF. The PDF does not describe the probability that the random 

process takes exactly the value x – it is only the density of the probabilitydensity of the probability. The probability properprobability proper

for the process x(t) is only defined for the event that the value x lies between two bounds xa and 

xb.

The probability P that x lies between 2 values xa and xb is given by:

∫=≤≤

b

a

x

x

ba dx)x(p)xxx(P

The shape of the PDF depends on the physical nature of the specific process. It depends on 

certain statistic parametersstatistic parameters.
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Statistic ParametersStatistic Parameters

mean value: ∫
+∞

∞−

==µ dx)x(px)x(E

variance:
2222 dx)x(px])x[(E µ−=µ−=σ ∫

+∞

∞−

standard deviation or root mean square rms: 2σ=σ

There are further parameters depending on higher statistic moments (integrals of xnp(x)) which 

do not interest here.
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GGAUSSIANAUSSIAN ProbabilityProbability DistributionDistribution

Processes which depend on a high number of independent variables can be described 

by a GGAUSSIANAUSSIAN PDFPDF, the so-called GGAUSSIANAUSSIAN bell curvebell curve. It depends only on the mean 

value µ and the standard deviation σ.
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ErgodicityErgodicity

• Time mean:
Mean value of a single realisation (we average over time) ⇒⇒⇒⇒ µµµµt, σσσσt

• Ensemble mean:
Mean value of all realisations for a fixed time (we average over the ensemble) 

⇒⇒⇒⇒ µµµµe, σσσσe

Condition for ergodicity:

µµµµt = µµµµe , σσσσt = σσσσe

Ergodic process: The statistic parameters of the ensemble for a given time instance 

(for GAUSSIAN processes the mean value and the standard deviation) are identical to the 

ones computed by averaging over time for a given sample. Then one sample represents 

the entire process.
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Calculation of Statistic ParametersCalculation of Statistic Parameters

from a Finite Samplefrom a Finite Sample

We assume ergodicity: time mean is equivalent to ensemble mean.
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Dynamic Contents of a SignalDynamic Contents of a Signal

Natural load processes are characterized by a randomly fluctuating excitation whose fluctuations 

are often defined with respect to a mean value. The random excitation leads to a random 

vibration of the structure which can also be split into a mean part and a fluctuating part.

time

wind load

mean load

fluctuating load

What would happen if the fluctuating part of 

the load were zero? Then we would have a 

constant load which would lead to a constant, 

i.e. static response, except for a short-lived 

transient phase caused by the load application. 

We can neglect this phase since we are 

interested in the long-time response. The 

dynamic response is therefore directly related to 

the fluctuations of the excitation.

The larger the fluctuations, the larger the dynamic response. How do we measure the magnitudemagnitude

of a fluctuation? The integral measure which captures not just the largest values which might 

occur only a few times but the overalloverall magnitude is the standard deviation standard deviation σσ. The larger σ, the 

larger the dynamic contents of the signal. A σ of zero indicates a purely static excitation.
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Standard Deviation of a Standard Deviation of a HarmonicHarmonic SignalSignal

Harmonic functions are always of special interest in structural dynamics. So we start by 

analyzing the dynamic contents of a harmonic signal.

2

2/T

2/T

22

x A
2

1
dt)tsinA(

T

1
=Ω=σ ∫

−

x(t)

t

tsinA)t(x Ω=

We see that the standard deviation depends on the amplitude of the signal, but not on the 

frequency. All sinusoidal excitations have the same standard deviations, irrespective of their 

frequencies. But what about the structural response caused by the excitation? It also has a 

dynamic contents, and we ask ourselves if it is also independent from the load frequency. The 

answer is clearly no, as we know from the Dynamics I, lectures on harmonic and periodic 

loading.
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FrequencyFrequency--Dependence of the ResponseDependence of the Response

Statistic parameters alone do not 

characterize a stochastic process!
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Time-dependent loading leads to dynamic amplification. This effect is captured for the case of a 

harmonic excitation with the amplification factor V1, as shown above. The magnitude of the 

dynamic amplification is strongly influenced, one might say dominated, by the load frequency. In 

the case of resonance we observe the phenomenon that small load amplitudes can be amplified to 

such an extent that the structure cannot withstand the excitation. 
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DynamicDynamic ResponseResponse

0 2 4 6 8 10 12

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

time [s]

lo
a

d
 [
k
N

]

0 2 4 6 8 10 12

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

time [s]

lo
a

d
 [
k
N

]

The statistic parameters depend only on the values of the signal, not on their sequence. The two 

load histories below fluctuate between -1000 and +1000. Both have an equal number of points 

with negative or positive values. Their standard deviations are therefore identical.

The sequence of the values, however, is not identical. History 1 has two phases with a constant 

load each, while history 2 is characterized by a saw-tooth that switches every 1.0 s between +1000 

and -1000. The resulting response histories (an SDOF system with T = 1.0 s) show completely 

different response characteristics despite the identical rms of the excitation.
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DynamicDynamic ResponseResponse
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The statistic parametersstatistic parameters allow a static viewstatic view of the dynamic process. By averaging over time we 

eliminate the information regarding the sequence of events. To capture the dynamics of the 

process we need to include the sequence of events which leads us to stochastic parametersstochastic parameters. These 

can be defined in both time and frequency domains.
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StochasticStochastic PropertiesProperties in in thethe TDTD

Definition: 

AutoAuto--covariancecovariance functionfunction R(ττττ) for a process with zero mean:

∫
−

τ+=τ

2/T

2/T

dt)t(x)t(x
T

1
)(R 2)0(R σ==τ

2

)(R
)(

σ

τ
=τρ

AutoAuto--correlationcorrelation functionfunction::

1)0( ==τρ



University of Wuppertal, Institute for Structural Mechanics and Numerical Methods, Prof. Dr.-Ing. W. Zahlten ♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣ page 18

AutoAuto--CovarianceCovariance FunctionFunction

The auto-covariance function describes the internal structure of a process in the time domain. 

The “more deterministic“ a process is, the stronger is the covariance within the process. We 

study several examples.

ττττ

time window time window

with time lag ττττ
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ExampleExample 1: 1: DeterministicDeterministic ProcessProcess

harmonic process:

tsinA)t(x Ω=
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The periodicity of x(t) is translated into R(ττττ)! 
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ExampleExample 2: White 2: White NoiseNoise ProcessProcess

R(ττττ)

time lag ττττ

full correlation for ττττ = 0

(R(0) = σσσσ2!)

zero correlation for ττττ ≠≠≠≠ 0

time signaltime signal
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ExampleExample 3: 3: HistoryHistory of Wind of Wind SpeedSpeed

time lag ττττ

R(ττττ)
time signaltime signal

measurable,

decreasing

correlation

for ττττ < L

small correlation for ττττ > L

L
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ExampleExample 4: Response to 4: Response to thethe Wind Wind SpeedSpeed

R(ττττ)
time signaltime signal

time lag ττττ

periodic correlation:

response is a superposition of

the first eigenmode plus

a stochastic part
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AutoAuto--Covariance Function and Stochastic ProcessCovariance Function and Stochastic Process

We can experience a stochastic processstochastic process only through its realizationsrealizations. Two realizations which stem from the same 

process represent the process, and must therefore be equivalentequivalent. They are not identicalnot identical in the sense that their 

time functions are identical, but their stochastic – and therefore also dynamic – contents must be identical, 

except for numerical errors caused by the finite length of the sample.

A stochastic excitation process as a whole induces a vibration in the structure which is also a stochastic process. 

Again it can only be experienced via its realizations. Now we take two realizations from a given load process 

and compute the structural responses. We get two results which appear different when we look at the time 

histories, yet they must be identical with regard to their stochastic and dynamic contents since they are caused 

by the same underlying excitation process.

That raises the question of when two time histories are stochastically identical, i.e. how can we determine the 

stochastic process underlying the two processes. We have seen that the statistic parameters are unsuitable: we 

can easily find many processes which are stochastically distinct but which still have the same standard 

deviation. The parameter which describes the process unequivocally is the auto-covariance function. Two 

processes with the same auto-covariance function are identical! That means that all realizations from a given 

process, no matter how different their time histories may look, would produce, except for numerical errors, the 

same auto-covariance function. Or vice versa: two time histories with different auto-covariance functions do 

not stem from the same stochastic process.

Even though the auto-covariance function describes the process fully, it is usually not used in engineering 

practice. More suitable for practical application is a description in frequency space. That leads to the definition 

of the autoauto--spectrumspectrum. Time domain and spectral domain are generally related by the FOURIER transformation, so 

we expect also a FOURIER relationship between the auto-covariance function and the auto spectrum. 
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StochasticStochastic PropertiesProperties in in thethe FDFD

∫
−
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Auto-covariance function:
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Flashback: FOURIER transformation

∫ ∫
−

∞
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We express the function x(t+ττττ) by a FOURIER integral:
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We re-order the sequence of integration:

∫
∞

∞−

Ω−=Ω dte)t(x)(X ti ∫
∞

∞−

Ω=Ω dte)t(x)(X
~ ti

TD ⇒⇒⇒⇒ FD

∫
∞

∞−

Ω ΩΩ
π

= de)(X
2

1
)t(x ti

FD ⇒⇒⇒⇒ TD



University of Wuppertal, Institute for Structural Mechanics and Numerical Methods, Prof. Dr.-Ing. W. Zahlten ♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣ page 26
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We interpret the integral over t as a FOURIER integral and substitute it in the expression of R(τ). 

The limes is independent of Ω and can be transferred into the integral. It concerns the length of 

the time signal x(t). 
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2

2T

i )(X
T

1
limde)(R)(S Ω=ττ=Ω

∞→

∞

∞−

τΩ−∫

S(ΩΩΩΩ): auto-spectrum of the process, frequency domain representation of the auto-covariance 

function. We can compute it in two different ways:

• calculate R(ττττ), FT yields S(ΩΩΩΩ)

• FT of x(t), X(ΩΩΩΩ) yields S(ΩΩΩΩ)

We rename the function before the exponential term S and call it auto-spectrum. It is a function 

of the frequency Ω: S = S(Ω).
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The auto-covariance function is the integral of the auto-spectrum over the entire frequency 

domain. Formally it is a FOURIER integral and we see that the auto-spectrum is the frequency 

domain representation of the auto-covariance function and vice versa.
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Interpretation of the AutoInterpretation of the Auto--SpectrumSpectrum

ΩΩ
π

=σ==τ ∫
∞

∞−

d)(S
2

1
)0(R 2

The auto-spectrum is equivalent to the decomposition of the variance into its frequency 

components. It no longer represents a static view of the dynamic contents of the signal. Since σσσσ is 

responsible for the dynamic effects, i.e. the vibration energy, we can deduce from the auto-

spectrum which frequency ranges contain the highest energy contents. If the maxima of the 

spectrum of the excitation coincide with the maxima of the transfer function (dynamic 

amplification) we have the greatest resonance effects. Each contribution σ2(Ω) to the total 

variance σ2 is amplified with the dynamic amplification belonging to that frequency.

Full name for the auto-spectrum:

Power Spectral Density Function PSDF
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Example: Ground Motion (Acceleration)Example: Ground Motion (Acceleration)
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Given: 4 acceleration histories with different maximum values (1.356, 1.608, 1.758. 1.458). Question: 

do they stem from the same stochastic process, i.e. are they stochastically equivalent?
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AutoAuto--Spectra of the QuakesSpectra of the Quakes

The auto-spectra fluctuate about a common mean curvecommon mean curve, i.e. they are all realizations of a common common 

stochastic processstochastic process. The mean curve would represent the auto-spectrum of the underlying 

stochastic process. Since a stationary stochastic process is fully characterized by its auto-

spectrum, we can say that the 4 histories are stochastically equivalent. 
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Attention: Other Form for the PSDFAttention: Other Form for the PSDF

ΩΩ=τ τΩ

∞

∞−

∫ de)(Ŝ)(R i

ΩΩ=τ τΩ

∞

∫ de)(S)(R i

0

*

(a)

(b)

two-sided, without factor 2ππππtwo-sided, without factor 2ππππ

one-sided, without factor 2ππππone-sided, without factor 2ππππ

When using spectra from literature, one must make sure of the definition on which the 

spectra are based!
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WWIENERIENER--KKHINTCHINEHINTCHINE EquationsEquations

∫
∞

∞−

Ω−Ω=Ω dt)tsinit(cos)t(R)(S

)t(R)t(R =−

definition:

The auto-covariance is symmetric:

The integral of a symmetric with an anti-symmetric function is zero

∫
∞

ω=Ω

0

dttcos)t(R2)(S

TD ⇒⇒⇒⇒ FD

ΩτΩΩ
π

= ∫
∞

dcos)(S
1

)t(R

0

FD ⇒⇒⇒⇒ TD
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Extension to Fields of Extension to Fields of ProcessesProcesses

wind-loaded bridgewind-loaded bridge

The entire bridge is loaded by wind forces:

a stochastic process.

At each point the wind speed has a different history:

many realisations.

The individual realisations are independentindependent yet correlatedcorrelated:

• the histories at neighbouring points are “similar”,

• at points far apart “different”.

This fact strongly influences the magnitude of the response.
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CrossCross--Covariance of Two ProcessesCovariance of Two Processes

∫
−

τ+=τ=τ

2/T

2/T

jijiij dt)t(x)t(x
T

1
)(R)(R

given: 2 processes xi and xj:

cross-covariance function Rij(ττττ):

The cross-covariance describes the correlation between two processes. The correlation is not 

constant with respect to time: two processes might be strongly correlated at the beginning but 

might lose their correlation as time progresses. The cross-covariance function is therefore 

formulated as a function of the time lag τ: Rij = Rij(τ).
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CrossCross--Covariance of a Field of ProcessesCovariance of a Field of Processes
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n22221
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R

We can extend the concept of cross-covariance to a field of n random processes x1, x2, ..., xn. Then 

we can compute a cross-covariance function for each possible pair and gather them into the crosscross--

covariance matrixcovariance matrix. The diagonal elements are the auto-covariance functions.

cross-covariance matrix R(ττττ):

For a fixed time lag ττττ, R represents the spatial correlation properties of the field of processes at 

this time.
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CrossCross--SpectraSpectra

The cross-spectra are the FD equivalent to the cross-covariance in the TD. They can be computed 

either by determining first the cross-covariance matrix R and then transforming each element 

separately by a FOURIER transformation into the spectral domain, or by computing the FOURIER

transform for each process and finding Sij as the product of the individual FOURIER transforms.

ΩΩ
π

=τ τΩ

∞

∞−

∫ de)(S
2

1
)(R i

ijij

)(X)(X
~

T

1
limde)(R)(S ji

2T

i

ijij Ω⋅Ω=ττ=Ω
∞→

∞

∞−

τΩ−

∫

• The cross-spectra of all processes make up the crosscross--spectral matrixspectral matrix.

• The autoauto--spectraspectra are realreal, while the crosscross--spectraspectra are complexcomplex. The cross-spectral matrix is

conjugate complex symmetric.
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Outlook to Outlook to StructuralStructural DesignDesign

Given:

(a) Structural design: masses M, stiffness K, damping C.

(b) Loading in the spectral domain: cross-spectral matrix S.

Unknown:

Characteristic values of the structural response which can be

compared to permissible values.

Question:

How do we calculate these from the spectral loading data?


