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Stochastic Excitation
Part A: Description of Stochastic Processes
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Overview

e General remarks

e Properties of a single stochastic process:
e statistic parameters
e stochastic properties in the TD
e stochastic properties in the FD

e Extension to fields of processes
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Deterministic and Stochastic Processes

Process: evolution of a time-dependent variable x(t)

. 3 . 3

Deterministic process: Stochastic process:

The value at time t can be predicted The value at time t cannot be
from a given relationship or from the | predicted with certainty. Only some
values of the previous time instances. | properties of the process are known.
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Process and Realisation

Process: | sample 1

The ensemble of all possible
measurements.
One single measurement: realisation or
sample of the process.

. B

sample 3 | sample 2

Knowledge about the process is gained by individual measurements. Each measurement differs
from all others — the measurements are non-repeatable. The process (the ensemble of all

measurements) itself can only be known partially by its realisations.
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Classification of Stochastic Processes

e stationary/instationary:
In a stationary process the characterising properties are time-independent
within the time window under consideration.

* GAUSSIAN/Non-GAUSSIAN:
A GAUSSIAN process has a GAUSSIAN probability density function.

* Ergodic/Non-Ergodic:
One single realisation represents, apart from numerical inaccuracies, the entfire
process.

In the following:
Stationary, GAUSSIAN, ergodic processes.

Mmenum

University of Wuppertal, Institute for Structural Mechanics and Numerical Methods, Prof. Dr.-Ing. W. Zahlten & & & & page 5




Probability

In a discrete process, e.g. the casting of a die, we can assign a probability to each possible
outcome. The probability of casting a 2 is exactly 1/6 for a perfect die. The assignment of a
probability to a single-valued event is not possible for a continuous real process x(t).

Take e.g. the weight of chicken eggs. What is the probability of an egg having a weight of 80
grams? To find out we measure 10000 eggs with a letter scales with an accuracy of 1 gram and
find that 100 eggs weigh 80 grams, so we would assign the 80-gram event a probability of
100/10000=0.01. Now someone presents us with a more accurate digital scales. We re-measure -
better scales, better results — with the new scales which has a finer accuracy of 0.1 grams and find
that only 10 of the original 100 eggs “‘really’’ weigh in at 80 grams — the rest have 79.8 or 79.9 or
80.2 or ... grams. It was the limited accuracy of our first scales which erroneously assigned
further 90 eggs the 80-gram weight. So our probability drops to 10/10000=0.001.

If we were to repeat the weight testing with an even more accurate scales, we would find even less
eggs with a weight of 80.0 grams. In the limit of an infinitely accurate scales we would not find
even a single egg with exactly the target weight. Between two real numbers it is always possible to
fit in an infinity of further real numbers. So makes no sense to assign a probability to the exact
outcome of a real random process — that probability is zero. Instead we define the probability
density function.
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Probability Density Function

Each possible value x of a random process x(t) is assigned a value p(x). The function p(x) is called
probability density function PDF. The PDF does not describe the probability that the random
process takes exactly the value x — it is only the density of the probability. The probability proper
for the process x(t) is only defined for the event that the value x lies between two bounds x, and
Xp,e

The probability P that x lies between 2 values x, and x, is given by:

P(x, <x<Xx,)
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The shape of the PDF depends on the physical nature of the specific process. It depends on

certain statistic parameters.
[NENUM

University of Wuppertal, Institute for Structural Mechanics and Numerical Methods, Prof. Dr.-Ing. W. Zahlten & & & & page 7




Statistic Parameters

oo

mean value: |L = E(X) = jxp(x)dx

—0Q

oo

variance: |G~ = E[(X—u)z] = sz p(X)dx—u2

—0Q

standard deviation or root mean square rms: |G = +/o°

There are further parameters depending on higher statistic moments (integrals of x"p(x)) which
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GAUSSIAN Probability Distribution

value u and the standard deviation o.

Processes which depend on a high number of independent variables can be described
by a GAUSSIAN PDF, the so-called GAUSSIAN bell curve. It depends only on the mean

] P(X)

1
pgauss (X) R \/EG
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Ergodicity

e Time mean:
Mean value of a single realisation (we average over time) = |, G,

* Knsemble mean:
Mean value of all realisations for a fixed time (we average over the ensemble)
- l”l’e9 Ge

Condition for ergodicity:
!J't = ue ? Gt = Ge

Ergodic process: The statistic parameters of the ensemble for a given time instance
(for GAUSSIAN processes the mean value and the standard deviation) are identical to the
ones computed by averaging over time for a given sample. Then one sample represents
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Calculation of Statistic Parameters
from a Finite Sample

We assume ergodicity: time mean is equivalent to ensemble mean.

continuous sample: discrete sample:
I N
1 p 1
no=g]xod =5 x
0 i=1

Q
1
Q
II

T
A 2l <2
: T!x (Ddt—p?| |o” Z(x) -
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Dynamic Contents of a Signal

Natural load processes are characterized by a randomly fluctuating excitation whose fluctuations
are often defined with respect to a mean value. The random excitation leads to a random
vibration of the structure which can also be split into a mean part and a fluctuating part.

1 wind load

l ‘M | fluctuating load
\
!

M‘IJW |
“|N M H ;‘U K Wm W “‘ \

mean load

What would happen if the fluctuating part of
the load were zero? Then we would have a
constant load which would lead to a constant,
i.e. static response, except for a short-lived
transient phase caused by the load application.
We can neglect this phase since we are
interested in the long-time response. The
dynamic response is therefore directly related to
the fluctuations of the excitation.

The larger the fluctuations, the larger the dynamic response. How do we measure the magnitude
of a fluctuation? The integral measure which captures not just the largest values which might
occur only a few times but the overall magnitude is the standard deviation . The larger o, the
larger the dynamic contents of the signal. A ¢ of zero indicates a purely static excitation.
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Standard Deviation of a Harmonic Signal

Harmonic functions are always of special interest in structural dynamics. So we start by
analyzing the dynamic contents of a harmonic signal.

x(t) = AsinQt I

1x(t)

T/2

) o7 = % J(Asith)zdt = %Az

-T/2

We see that the standard deviation depends on the amplitude of the signal, but not on the
frequency. All sinusoidal excitations have the same standard deviations, irrespective of their
frequencies. But what about the structural response caused by the excitation? It also has a
dynamic contents, and we ask ourselves if it is also independent from the load frequency. The
answer is clearly no, as we know from the Dynamics I, lectures on harmonic and periodic
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Frequency-Dependence of the Response
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Time-dependent loading leads to dynamic amplification. This effect is captured for the case of a
harmonic excitation with the amplification factor V,, as shown above. The magnitude of the
dynamic amplification is strongly influenced, one might say dominated, by the load frequency. In
the case of resonance we observe the phenomenon that small load amplitudes can be amplified to

dynamic amplification [-]
o X

Yy
H=

iy

such an extent that the structure cannot withstand the excitation.
[T1ENUIT)
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Dynamic Response

The statistic parameters depend only on the values of the signal, not on their sequence. The two
load histories below fluctuate between -1000 and +1000. Both have an equal number of points
with negative or positive values. Their standard deviations are therefore identical.
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The sequence of the values, however, is not identical. History 1 has two phases with a constant
load each, while history 2 is characterized by a saw-tooth that switches every 1.0 s between +1000
and -1000. The resulting response histories (an SDOF system with T = 1.0 s) show completely
different response characteristics despite the identical rms of the excitation.
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Dynamic Response

0.15—
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response [m]
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-0.15—

-0.2
0

time [s]

The statistic parameters allow a static view of the dynamic process. By averaging over time we
eliminate the information regarding the sequence of events. To capture the dynamics of the
process we need to include the sequence of events which leads us to stochastic parameters. These

can be defined in both time and frequency domains.
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Stochastic Properties in the TD

Definition:
Auto-covariance function R(7) for a process with zero mean:

T/2

R(T) = % J‘X(t)x(t+’c)dtﬂ R(t=0) = ¢°

—T/2

Auto-correlation function:

p(t) = —~ = p(1=0) =1

Mmenum
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Auto-Covariance Function

time window time window
with time lag ©

+— T+

The auto-covariance function describes the internal structure of a process in the time domain.
The “more deterministic* a process is, the stronger is the covariance within the process. We
study several examples.

2 Menu
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Example 1: Deterministic Process

harmonic process:

X (t) — A Sln Qt The periodicity of x(t) is translated into R(7)!
T/2

R(7) = % j (Asin Qt)(Asin[Q(t+T)])dt| |T = ==

=T/2

1 1
R(T) = —A°cosQ1 R(0) = —A* = ¢’
® = = [RO) =

Mmenum
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Example 2: White Noise Process

| R(1)

time signal

PSP

1 full correlation for T =0 | ‘\ ‘\ }\‘ i I
(R(0) = o)

) zero correlation for t#0
S R
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Example 3: History of Wind Speed

IR(7) |

time signal
|

measurable,
decreasing
correlation
fort<L

small correlation for T > LL
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Example 4: Response to the Wind Speed

| R(7) time signal

i m

““HmHHHHHHIHl““““l fAVLA 111“!“111 Hlll‘“““““hlm

I(IH’H L WAV ATTTTTTTTTeT Vv ovTOm

periodic correlation:

response is a superposition of WW
the first eigenmode plus '

a stochastic part

time lag T
Menum




Auto-Covariance Function and Stochastic Process

We can experience a stochastic process only through its realizations. Two realizations which stem from the same
process represent the process, and must therefore be equivalent. They are not identical in the sense that their
time functions are identical, but their stochastic — and therefore also dynamic — contents must be identical,
except for numerical errors caused by the finite length of the sample.

A stochastic excitation process as a whole induces a vibration in the structure which is also a stochastic process.
Again it can only be experienced via its realizations. Now we take two realizations from a given load process
and compute the structural responses. We get two results which appear different when we look at the time
histories, yet they must be identical with regard to their stochastic and dynamic contents since they are caused
by the same underlying excitation process.

That raises the question of when two time histories are stochastically identical, i.e. how can we determine the
stochastic process underlying the two processes. We have seen that the statistic parameters are unsuitable: we
can easily find many processes which are stochastically distinct but which still have the same standard
deviation. The parameter which describes the process unequivocally is the auto-covariance function. Two
processes with the same auto-covariance function are identical! That means that all realizations from a given
process, no matter how different their time histories may look, would produce, except for numerical errors, the
same auto-covariance function. Or vice versa: two time histories with different auto-covariance functions do
not stem from the same stochastic process.

Even though the auto-covariance function describes the process fully, it is usually not used in engineering
practice. More suitable for practical application is a description in frequency space. That leads to the definition
of the auto-spectrum. Time domain and spectral domain are generally related by the FOURIER transformation, so
we expect also a FOURIER relationship between the auto-covariance function and the auto spectrum.

W
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Stochastic Properties in the FD

aperiodic time signal | $X(t)

ot
L /2 /2 J

Auto-covariance function:

T/2
R(7) = lim l jx(t)x(t+’t)dt
T/2—0 T°
~T/2
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Flashback: FOURIER transformation

FD = TD TD = FD
x(t) = zi j X(Q)e ™ dQ X(Q)= j x(t)e ® dt| | X(Q) = j x(t)e" dt
T

We express the function x(t+t) by a FOURIER integral:

o0 /2 o
1 o 1 1 o
X(t+7) = — | X(Q)ee " dQ R(t) = lim — I X(t) — j X(Q)e''e " dQ ¢ dt
1) = - [X@ ) |R(o) = lim — [ x(0{- [X@
—oo ~T/2 —oo
We re-order the sequence of integration:
| /2
R(t) = lim — j X(Q) j x(t)e*dt e *dQ
T/2— DT
oo ~T/2
= Mmenum
e <
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We interpret the integral over t as a FOURIER integral and substitute it in the expression of R(7).

T/2 0
lim j x(t)e™ dt = I x(t) e dt = X(Q)
~T/2 —oo

3 B
Lo L

R(1) = — lim
2T T/2—0 T

j X(Q)X(Q)e*dQ = 1 jim L

j X(Q)e™ dQ
2n 12T o

The limes is independent of Q2 and can be transferred into the integral. It concerns the length of
the time signal x(t).

R(7) = 1 lim 1

X(Q) e dQ
21 J 12> T

[TENUIT]
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We rename the function before the exponential term S and call it auto-spectrum. It is a function
of the frequency Q: S = S(Q).

S(Q) = lim l\g(g)f ) R(1) = zi j S(Q) e dQ
T

T/2—e T

The auto-covariance function is the integral of the auto-spectrum over the entire frequency
domain. Formally it is a FOURIER integral and we see that the auto-spectrum is the frequency
domain representation of the auto-covariance function and vice versa.

(oo}

S(Q) = j R(t)e™ " dt = T%mwT‘X(Q)‘

—0Q

S(€2): auto-spectrum of the process, frequency domain representation of the auto-covariance
function. We can compute it in two different ways:

e calculate R(7), FT yields S(Q2)
* FT of x(t), X(Q2) yields S(Q2)

Y MeNUM
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Interpretation of the Auto-Spectrum

, 1
R(t=0) = 67 = 27tJ;S(Q)dQ

The auto-spectrum is equivalent to the decomposition of the variance into its frequency
components. It no longer represents a static view of the dynamic contents of the signal. Since G is
responsible for the dynamic effects, i.e. the vibration energy, we can deduce from the auto-
spectrum which frequency ranges contain the highest energy contents. If the maxima of the
spectrum of the excitation coincide with the maxima of the transfer function (dynamic
amplification) we have the greatest resonance effects. Each contribution ¢%(Q) to the total
variance ¢? is amplified with the dynamic amplification belonging to that frequency.

Full name for the auto-spectrum:

Power Spectral Density Function PSDF

[ENUIT]

University of Wuppertal, Institute for Structural Mechanics and Numerical Methods, Prof. Dr.-Ing. W. Zahlten & & & & page 28




Example: Ground Motion (Acceleration)

Given: 4 acceleration histories with different maximum values (1.356, 1.608, 1.758. 1.458). Question:
do they stem from the same stochastic process, i.e. are they stochastically equivalent?

Maximalwert 1.356m/s**2 Maximalwert 1.608m/s**2
1.5 T T T T T T T T 1.5 T T
1
1
~ | — 0.5p
N osHAH A H o
@ @
E E
o [=) 0
5 5
2 o k=
c c
3 305
=y =y
3] | 3]
S o5 H]- I i 3
o @
-1
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R | I I I I I I I R | I I I I I I I
1'50 5 10 15 20 25 30 35 40 45 20 5 10 15 20 25 30 35 40 45
Zeit [s] Zeit [s]

Maximalwert 1.758m/s**2
T T

I
15 15
|
|
|
S | T S
! | |
| |
|
~ | |
¥ 05 — - - + i I bl bl
K4 |
E
g [ J I
= i || 11 A )
2 0 \|
> |
2 |
<
[5] |
8 .05 |~ B
o - ! | f
| |
| |
1 | |
- e o
|
|
2 | | | | | | | | 15 | | | | | | | |
0 5 10 15 20 25 30 35 40 45 ~o 5 10 15 20 25 30 35 40 45
Zeit [s] Zeit [s]
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Auto-Spectra of the Quakes

The auto-spectra fluctuate about a common mean curve, i.e. they are all realizations of a common

stochastic process. The mean curve would represent the auto-spectrum of the underlying
stochastic process. Since a stationary stochastic process is fully characterized by its auto-

spectrum, we can say that the 4 histories are stochastically equivalent.

[£,.5/2..W] wnioads one

frequency [Hz]
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Attention: Other Form for the PSDF

two-sided, without factor 27 I

@ |[R(T) = jg(ﬂ)eim dQ

one-sided, without factor 27 I

j S (Q)e dQ
0

) R(7)

When using spectra from literature, one must make sure of the definition on which the

spectra are based!

Y=Y - _
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WIENER-KHINTCHINE Equations

definition:

oo

S(Q) = jR(t) (cos Qt —1sin Q2t) dt

—00

The auto-covariance is symmetric: [R(—t) = R(t)

The integral of a symmetric with an anti-symmetric function is zero

1 B

™D = FD FD=TD

S(Q2) = ZJR(t)cos ot dt R(t) = %J‘S(Q)COSQ’CdQ
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Extension to Fields of Processes
wind-loaded bridge I

M'
T

l" ]v ‘ q‘
| »H‘ﬁ WM ﬁ M‘
/w‘ | J \ w W
lqu MM«M'MWm‘m%m,MWWN,M},}M'\JA \w y

The entire bridge is loaded by wind forces
a stochastic process.

At each point the wind speed has a different history:

many realisations.
The individual realisations are independent yet correlated:

e the histories at neighbouring points are ‘‘similar”,
e at points far apart “different”.

This fact strongly influences the magnitude of the response.

4y
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Cross-Covariance of Two Processes

given: 2 processes x; and x;:

. =

cross-covariance function R;;(1):

T/2

Ri(1) = R;(7) = % x; (O x;(t+7)dt

=T/2

The cross-covariance describes the correlation between two processes. The correlation is not
constant with respect to time: two processes might be strongly correlated at the beginning but

might lose their correlation as time progresses. The cross-covariance function is therefore
formulated as a function of the time lag 7: R;; = R;;(7).

Yy
W=
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Cross-Covariance of a Field of Processes

We can extend the concept of cross-covariance to a field of n random processes x;, X,, ..., X,. Then
we can compute a cross-covariance function for each possible pair and gather them into the cross-
covariance matrix. The diagonal elements are the auto-covariance functions.

. =

cross-covariance matrix R(7):

'R, (t) R,(t) eee R (7)]
R, () R, (t) eee R, (1)

_Rnl(T) RnZ(T) oo Rnn (T)_

R(1) =

For a fixed time lag 7, R represents the spatial correlation properties of the field of processes at

[TENUIT]
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Cross-Spectra

The cross-spectra are the FD equivalent to the cross-covariance in the TD. They can be computed
either by determining first the cross-covariance matrix R and then transforming each element
separately by a FOURIER transformation into the spectral domain, or by computing the FOURIER
transform for each process and finding S;; as the product of the individual FOURIER transforms.

S,(Q) = j R, (1)e ™™ dt = lim if(i(g)-xj(gz)

- T/2—00 T —

R.(1) = ngﬁ(g)eimdg
27t_

» The cross-spectra of all processes make up the cross-spectral matrix.
* The auto-spectra are real, while the cross-spectra are complex. The cross-spectral matrix is

4

%
It
NN

conjugate complex symmetric.
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Outlook to Structural Design

Given:
(a) Structural design: masses M, stiffness K, damping C.
(b) Loading in the spectral domain: cross-spectral matrix S.

Unknown:
Characteristic values of the structural response which can be
compared to permissible values.

Question:
How do we calculate these from the spectral loading data?
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