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Overview

• Definition of a response spectrum
• Response of an SDOF-system under seismic loading

• Pseudo-spectra

• Structural analysis
• Concept

• SRSS superposition

• Design response spectra (EUROCODE 8)

• Example
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Response of an SDOF-System to Seismic Loading

gvmkvvcvm  −=++ gvmkvvm2vm  −=++

Response spectra result from the response of a single-degree-of-freedom system to seismic

excitation. We start by looking at the equation of motion:

g

2 vvv2v  −=++

The seismic load is proportional to the mass. This has the effect that the equation of motion does

not, after division by m, depend on the actual values of k and m, but only on the eigenfrequency of

the system. All SDOF-systems with the same eigenfrequency show exactly the same response to a

given acceleration history ag(t)! Therefore it is possible to calculate the response for all possible

SDOF-systems to a given ag(t) beforehand by looping over all eigenfrequencies. We plot the

maximum response, i.e. the maximum displacement, velocity and acceleration versus the period

(not the frequency) of the SDOF-system. Such a plot contains full information regarding the

maximum response for the quake in question. Such a function is called response spectrum.
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Generation of a Response Spectrum

choose

accelerogram

choose

damping 
loop over the frequency domain:

TD analysis of SDOF-systems

extract

maximum values

plot over period T

period T

response, e.g. acceleration

response spectrum

 = •••

different damping
different

earthquake



University of Wuppertal, Institute for Structural Mechanics and Numerical Methods, Prof. Dr.-Ing. W. Zahlten  page 5

Types of Response Spectra

d

2

va SSS ==

The spectral ordinates are generally denoted by S. We have:

• The displacement spectrum Sd for the relative displacement.

• The velocity spectrum Sv for the relative velocity.

• The acceleration spectrum Sa for the absolute acceleration.

If the SDOF-oscillator responds harmonically (as in the case of a pure

white noise process), and the damping is zero, we have the relationship:

If that is not the case, and we still derive Sa and Sv from Sd via , we talk of

"pseudo-spectra". We will se later that EUROCODE 8 only defines acceleration

spectra, so that if we need velocity or displacement spectra we have to derive

them as pseudo-spectra.
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Structural Analysis

We now think back to the mode superposition method. Its basic idea was to decouple the

equation of motion into a number of independent SDOF-oscillators. Each oscillator can then

be computed separately, and the solution of the original structure can be obtained by a

superposition of the SDOF-solutions. The attractiveness of the method lies in the physical

property that higher mode shapes contribute less to the total response than lower ones, so that

we could neglect all modes above some critical threshold.

A structural analysis with the response spectrum method is similar. Again we transform the

problem into modal space and again we can reduce the number of relevant modal dofs. In

modal space we “calculate” the maximum response by a response spectrum, i.e. we simply take

the appropriate value from the response spectrum calculated beforehand. The entire

“computation” consists in a simple lookup of a scalar value. It is extremely simple.

The simplicity, however, is bought at a certain price. The response spectra yield only the

maximum absolute values, not the time instances at which these occur. We have looked up Nmode

maximum values for the Nmode modes, but it would be wrong to simply add up these maxima

since they occur at different times. We need special superposition techniques to account for this

problem.

Before we come to the superposition concepts, we take a closer look at the decomposition into

modal space for response spectra.
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Transformation into Modal Space

Modal decomposition was treated in Dynamics I, Lecture 7. We start from the coupled system

of differential equations in the finite element solution space:

)t(aggroundquakerelrelrel XMVMPVKVCVM −=−==++ 

We dispense with the index ()rel for simplicity’s sake. Now we define modal degrees of freedom

η(t) which we relate to the vector of nodal degrees of freedom V(t) via

...)t()t()t()t()t( 332211 +++== ΦΦΦΦV

In modal space the system becomes uncoupled:

i
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modal damping!
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Modal Responses

The factors βi with the tilde represent modal seismic masses. They lead to modal inertial forces

which produce the true modal response ηmod.

We have proven earlier in this lecture that the response of an SDOF-system under seismic

loads does not depend on the values for mass and stiffness, but only on its period. This,

however, is only true if the seismic mass on the right-hand side is identical to the structural

mass of the oscillator.

Then, and only then, the mass cancels out and we can look up the maximum response in a

response spectrum. We denote this look-up solution with ηresp. Our modal oscillator, however,

does not meet this requirement. The modal structural mass is computed by multiplying the

mass matrix from both left and right with the mode shape, while we perform only one single

multiplication for the modal seismic masses. So we cannot look up the maximum modal

response without further deliberations.

)t(a
~

ap~ gig

T

ii −=−= XMΦ

We can perform the time-independent matrix operations before we start with the time domain

solution:
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Scaling of the Modal Seismic Masses

We introduce a dimensionless scaling factor αi in each modal equation such that the scaled

modal seismic masses become identical to the modal structural masses:

The scaling factor changes the differential equation to:

iii m~
~
= i
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i m~
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The response-spectrum solution ηresp corresponds to the scaled load presp. We can look it up

directly without any problems. Since the true load is smaller by the factor αi, we simply have to

divide the look-up solution by the factor αi.
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True Modal Response

The true modal response is then given by:

i,resp

i

imod,

1

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Often in books the mode shapes are chosen such that the modal masses becomes unity (i.e.

equal to one mass unit – 1 tonne, 1 kg, …). The scaling factors then reduce to

i
i

i unit mass 1

~
1

=


=


Note: the beta-factors without tilde are dimensionless scaling factors, while the beta with tilde has

the dimension of mass. The numerical values are identical, but their units are different.

with



University of Wuppertal, Institute for Structural Mechanics and Numerical Methods, Prof. Dr.-Ing. W. Zahlten  page 11

Maximum Mode-Wise Response

The maximum modal response can be transformed back into the original finite element space:

i,diiimax,mod,iimax, S)t( == ΦΦV

i,viiimax,mod,iimax, S)t( == ΦΦV 

i,aiiimax,mod,iimax, S)t( == ΦΦV 

)t()t( =ΦV

The above equation holds for all time instances. For the maximum responses of the i-th mode

we get:

The mode-wise maximum responses must finally be aggregated to maximum responses for the

true structure. This leads us directly to the question of spectral superposition.
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Response Spectrum Method
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The Superposition Problem

Problem: We know the maximum values of 2 variables which are

independent, but we don‘t know the times at which these maxima occur.

Question: What is the maximum of the sum of these variables?

Case 1:

perfect positive correlation 21 VVV +=
V1V2

Case 2:

perfect negative correlation 21 VVV −=
V2 V1

Case 3:

no correlation
2

2

2

1 VVV +=
V2

V1
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The SRSS-Method

The SRSS-method (Square Root of the Sum of Squares) assumes uncorrelated variables. It reads

for the general case of n independent variables:


=

=

Nmod

1i

2

imax VV

It gives good results if the eigenfrequencies of the modes are widely spaced apart. The quality

is not that good if we have closely spaced eigenfrequencies. For these cases a more advanced

method, the CQC-method (Complete Quadratic Combination) which is based on the theory of

random vibrations, has been developed.
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The CQC-Method: Theory

The CQC method assumes a correlation of all modes, as witnessed in the double sum. The

correlation is captured by the cross-modal coefficients ρij. They depend on the damping ξ and the

ratio r of two eigenfrequencies, where the quotient is computed such that r is always less equal one.


= =

=

Nmod

1i

Nmod

1k

kikimax VVV
2222

2/32

ij
)r1(r4)r1(

r)r1(8

++−

+
= 1

),max(

),min(
r

ki

ki 



=

The diagonal terms (r=1) are unity, while the off-diagonal depend on r. For a cluster of closely

spaced eigenfrequencies (r≈1) we get rho-values in the vicinity of one, for widely spaced

frequencies (r ≈0) the correlation drops to almost zero.

The CQC method then degenerates to the SRSS method. So it is a more general method which

contains the classic SRSS as a special case. Most modern programs therefore contain CQC as the

more general case.

A numerical example which demonstrates the limits of SRSS can be found in the book by Edward

L. Wilson “Three-Dimensional Static and Dynamic Analysis of Structures”. He discusses a four-

storey three-dimensional building.
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The CQC-Method: Example

Wilson computed the first five eigenfrequencies to:

We observe two clusters of closely spaced frequencies: (ω1/ω2) and (ω3/ω4). The gap between

cluster 1 and cluster 2 is large, the gap between cluster 2 and ω5 is moderate. For ξ = 5 % we get

the following matrix of cross-modal parameters:

 418.54189.44995.43931.13869.13=ω























=

1.00000.18590.17960.00370.0037

0.18591.00000.99810.00570.0057

0.17960.99811.00000.00580.0057

0.00370.00570.00581.00000.9991

0.00370.00570.00570.99911.0000

ρ

We have a tight correlation within the two

clusters – shown by the two green sub-

matrices. There is no correlation between

cluster 1 and the rest, and a moderate

correlation of about 18 % between cluster

2 and the last frequency ω5.
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Use of Response Spectra

Response spectra depend on:

• The local situation: ground conditions etc.

• The earthquake.

For each site it is necessary to generate a site-specific spectrum.

Question:

Definition of design spectra which can be parametrized

to take account of the local conditions?
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Design Response Spectra

A design response spectrum is a simplified spectrum which is defined in a general way in a code.

For the specific problem it can be specified by free parameters which capture the local

conditions.

A design spectrum addresses in particular the problem of the statistic reliability of the results.

It is defined in such a way that it forms an envelope encompassing all possible earthquakes at a

given location. Therefore it produces results which are on the safe side and only one single

analysis is necessary to account for all possible cases.

In Europe seismic design is regulated in EUROCODE 8 “Design of structures for earthquake

resistance”. Part 1 “General rules, seismic actions and rules for buildings” regulates the more

general aspects, while Parts 2 through 6 deal with specific types of structures such as bridges

(Part 2), tanks, silos and pipelines (Part 4) or towers, masts and chimneys (Part 6).

Design spectra are defined in Part 1, separately for the horizontal and the vertical components.

Also there is a differentiation between elastic response spectra and inelastic design spectra. The

parameters defining the spectra are:

• The global seismic activity – seismic zone.

• The type of subsoil.

• The damping properties.

• The ductility of the structure.
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Elastic Spectrum for Horizontal Accelerations

response spectrum S
a

T
B T

D
T

C period T

( )




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−+= 15.2
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T
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B

g

5.2SaS g =

T

T
5.2SaS C

g =

2

DC
g

T

TT
5.2SaS =

The response spectrum has a plateau for structural periods

TB < T < TC. A mode of vibration with a period in this range

experiences the maximum dynamic amplification. The

elastic spectrum is defined for 5 % damping. Damping

other than 5 % is captured by the damping factor η.
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Earthquake Zones for Germany

Taken from:

1. DIN 4149: „ Bauten in deutschen Erdbebengebieten –

Lastannahmen, Bemessung und Ausführung üblicher 

Hochbauten“, April 2005.

2. Eurocode 8: „Auslegung von Bauwerken gegen Erdbeben –

Teil 1: Grundlagen, Erdbebeneinwirkungen und Regeln für 

Hochbau, Nationaler Anhang – National festgelegte 

Parameter“, Januar 2011.

The parameter ag describes the design intensity of the

quake. It is the value of the ground acceleration at the

base rock. Its value can be taken from a seismic map

from the National Annex to EC 8. If such a map does

not exist, then ag must be determined from the

records of seismic activity at the specific location. The

determination of ag is a task for a seismologist.

ground peak acceleration according to DIN 4149 and EC8

seismic zone 0 1 2 3

ag [m/s2] --- 0.4 0.6 0.8
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Soil Effects

The earthquake experiences a modification by passing from the base rock to the surface

through the subsoil. These modifications concern both a possible amplification and a shift of

the spectral content of the acceleration history. The amplification is captured by the soil factor

S and the shift of the spectral content by changing time boundaries TB, TC, TD. EC 8 contains

tables for different earthquake types for the standard soils types A – D.

elastic response spectrum type 1, horizontal component

soil type S TB [s] TC [s] TD [s]

A 1.00 0.15 0.40 2.0

B 1.20 0.15 0.50 2.0

C 1.15 0.20 0.60 2.0

D 1.35 0.20 0.80 2.0

E 1.40 0.15 0.50 2.0
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Soil Types

EC 8 defines five standard types of soil for which the parameters S, TB, TC, TD are given. If the

local soil situation cannot be captured by these standard classes, then special seismological

simulations must be performed to determine these above parameters.

Typ Beschreibung

A
Fels oder andere felsähnliche geologische Formation, mit höchstens 5 m weicherem 

Material an der Oberfläche.

B
Ablagerungen von sehr dichtem Sand, Kies oder sehr steifem Ton, mit einer Dicke von 

mindestens einigen zehn Metern, gekennzeichnet durch einen allmählichen Anstieg der 

mechanischen Eigenschaften mit der Tiefe.

C
Tiefe Ablagerungen von dichtem oder mitteldichtem Sand, Kies oder steifem Ton, mit 

Dicken von einigen zehn bis mehreren hundert Metern.

D
Ablagerungen von lockerem bis mitteldichtem kohäsionslosem Boden (mit oder ohne 

einige weiche kohäsive Schichten), oder von vorwiegend weichem bis steifem kohäsivem 

Boden.

E
Ein Bodenprofil, bestehend aus einer Oberflächen-Alluvialschicht mit vs-Werten nach 

C oder D und veränderlicher Dicke zwischen etwa 5 m und 20 m über steiferem 

Bodenmaterial mit vs > 800 m/s.
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Damping

7.0
1002

7


+
=

damping parameter for   5 %

The response spectra in EC 8 have all been computed by for a damping of 5 %. Theoretically, it

would be necessary to re-compute the response spectra for damping ratios different from 5 %

since the damping influences different harmonics in different ways: there is a pronounced

dependency of the dynamic amplification in the vicinity of the resonance point which vanishes

when moving away from it. To simplify things, EC 8 provides a damping correction factor η to

account for differing damping ratios.
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Ductility

Seismic effects within a structure depend not only on the intensity and spectral distribution of the quake, but

also on the ductility of the structure. We have no external loads which must be equilibrated by the inner forces.

Instead the ground moves, and the seismic forces are created by the inertia of the structure which tries to follow

the ground motion since it is connected to the ground. If, in the extreme case, structure and ground we

uncoupled, e.g. if the building rested on a smooth sliding surface, then the ground could move independently

from the structure above it and we would have no seismic excitation. The ground would move, and the

structure would remain at rest with regard to a fixed outside observer.

A similar, yet not so extreme effect occurs when we have inelastic ductile deformations. Inelastic behaviour, e.g.

cracking of concrete or plastification of the reinforcement, reduces the member stiffness of the afflicted

members. Instead of transmitting the ground motion into the structure, the members deform and we have a

partial decoupling of the ground motion from the motion of the building.

These effects are nonlinear in nature and could be captured by a nonlinear time domain analysis. Our

computational model would have to include nonlinear constitutive laws for our building materials – steel and

reinforced concrete – and we could update the material status at each time step, thus taking account of the

damage evolution in our structure. Typically, damage would first develop locally in some critical members and

large deformations develop also locally. The seismic effects within the remaining undamaged structure are

greatly reduced. Such simulations are feasible, yet they are extremely difficult to perform – profound

knowledge of nonlinear computational methods is required – and also computationally time consuming. Once

again we would have the problem that one analysis is not sufficient to capture the stochastic process per se. So

we had to perform a batch of analyses which increases the effort further.

To avoid these too complex computations, EC 8 provides a simplified way to account for ductile behaviour.
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Inelastic Design Spectra

ductility factor q

rigid buildings "normal" buildings ductile buildings

q 1 2  3 3  5

We have seen that ductility reduces seismic effects. Not because the quake itself is smaller – the

quake has no knowledge of the structural ductility – but because the inertial forces are reduced.

The response spectrum method is a linear method: we reduce the dynamic problem to a static one

where the dynamic effects are captured in the values of Sa, i.e. the inertial loads. The SDOF-

oscillator is per force physically linear, so it is not possible to calculate physically nonlinear

response spectra which model the damage evolution in time as does a time domain analysis.

Instead EC 8 provides the ductility factor q which is an overall measure of the ductility of the

entire structure. The response spectrum (c.f. next page) is basically divided by q so that a q of 3

means that the inner forces are reduced to one third.
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Ductile Design

We can only reduce the inner forces if we make sure that ductility effects can in fact be activated.

Two requirements must be met:

Inelastic deformations must be possible. A bridge pylon, e.g., is subjected to high static pressure

due to the dead weight of the bridge. The vertical acceleration is usually not sufficiently large to

overcome the static pressure so that no tension cracking occurs. As a consequence there is no

stiffness reduction and q must be set to 1. We have bending, however, for the horizontal

acceleration component, tension cracking can occur and we can design the pylon such that q is

larger than 1.

Inelastic deformation must be sustainable. The inelastic deformations must not lead to a

complete destruction of the member. Even though the member experiences damage in such a way

that its stiffness is reduced and large displacements occur, the member must retain its structural

integrity in its damaged state. We must ensure this condition by special calculations such a the so-

called capacity design. In a capacity design we check the existing ductility capacity against the

required ductility which depends on the q-factor we want to attain. If the existing ductility is too

small, we must redesign the member such that its ductility is increased to the required level.

Capacity design is not a topic we pursue here further; it is part of the theory of concrete

structures.
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Horizontal Response Spectra

Response spectra for the horizontal acceleration component

No region elastic spectrum inelastic design spectrum

1 0 < T  TB

2 TB  T  TC

3 TC  T  TD

4 TD  T
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Just as an example we see here the formulas for both the elastic and the design spectra from

EC 8.
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EC 8 – Summary

EUROCODE 8 regulates the “design of structures for earthquake resistance”. It is a substantial

work with hundreds of pages which addresses a multitude of aspects. In this lecture we could

only highlight very few of them and give a rough impression.

The practical application of EC 8 is not trivial. It should be studied carefully before producing

a practical design. Also it should be mentioned that EC 8 contains several inconsistencies

which can only be overcome by interpreting the code, i.e. a literal application is not always

possible.

One example is an inconsistency between the elastic spectra and the design spectra. If we

perform a TD analysis, we would have to use acceleration histories which are compatible with

the elastic 5%-spectrum. Damping and ductility effects are then part or our computational

model. That means that the elastic 5%-spectrum, for ξ = 5 % and q = 1, serves directly as our

design spectrum. That entails that the design spectrum should become identical to the elastic

spectrum for ξ = 5 % and q = 1. That, however, is not the case for the period range 0 < T < TB.

So we have an inconsistent situation for the period range 0 < T < TB, where the TD simulation

is not equivalent to the response spectrum solution.

So EC 8 should be applied carefully with a critical eye to other possible inconsistencies.
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Example: Plane Frame

h

h

massless

columns with

stiffness

EI
c

rigidly stiffened floors with mass M

structure

data

H = 4.0 m

M = 40 tons

EIc = 16000 kNm2

 = 5 %

We study a typical two-story

building whose load bearing

structure is made up of an elastic

frame. The mass is mainly

concentrated in the floors which

we treat as being rigid.



University of Wuppertal, Institute for Structural Mechanics and Numerical Methods, Prof. Dr.-Ing. W. Zahlten  page 30

Step 1: Discretized Model

h

h

M

M

3EIc

3EIc

model with 2 dofs

node 2

node 3

w2, j2 = 0

w3, j3 = 0

We build our numerical model with the direct

stiffness method. Here we introduce one central

simplification to reduce the number of kinematic

unknowns: we assume that the floors are rigid. This

assumption is justified if we compare the

extensional stiffness of a solid floor with the

stiffness of the columns which are several meters

space apart.

 (a) the rotations are zero.

 (b) the horizontal displacements within each

floor are identical.

From (b) it follows that the stiffness of the three

columns in each story can be combined into an

equivalent column with 3EIc. Thus our numerical

model has only two degrees of freedom: the two floor

displacements w2 and w3.



University of Wuppertal, Institute for Structural Mechanics and Numerical Methods, Prof. Dr.-Ing. W. Zahlten  page 31

Element Stiffness Matrices

generic 2D beam (dofs wi, ji, wk, jk):

















−

−

−

−−−

=

22

22

3

L4L6L2L6

L612L612

L2L6L4L6

L612L612

L

EI
k

element 1: dof w2

 12
h

EI3
3

c
1 =k

element 2: dofs w2, w3







−

−
=

1212

1212

h

EI3
3

c
2k
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System Matrices







−

−
=





−

−
=

90009000

900018000

1212

1224

h

EI3
3

cK

stiffness matrix







=





=

400

040

M0

0M
M

mass matrix



University of Wuppertal, Institute for Structural Mechanics and Numerical Methods, Prof. Dr.-Ing. W. Zahlten  page 33

Step 2: Eigenfrequency Analysis

0)det( 2 =− MK

0
4090009000

90004018000
2

2

=
−−

−−

1 = 9.27 rad/s

2 = 24.27 rad/s

f1 = 1.48 Hz

f2 = 3.86 Hz

T1 = 0.68 s

T2 = 0.26 s

The first analysis always consists in an eigenmode analysis. Our purpose is twofold: we need

the modal parameters for the transformation into modal space and we want to develop a

feeling for the modes of vibration.
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Modes of Vibration – Manual Calculation

mode 1:







=











−

−

0

0

w

w

40.55629000

900040.14562

e3

e2







=

6181.1

1
1Φ

Both floors move in the same direction!

mode 2:







=











−−

−−

0

0

w

w

40.145629000

900040.5562

e3

e2







−

=
6180.0

1
2Φ

The floors move in opposing directions!
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Modes of Vibration – Visual Representation

mode 1: T = 0.68 s mode 2: T = 0.26 s
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Modes of Vibration – Animation

mode 1: T = 0.68 s mode 2: T = 0.26 s
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Step 3: Transformation into Modal Space

Often in literature the eigenmodes are scaled such that the modal masses become unit masses.

There is no mathematical necessity for this scaling, as we have seen in Lecture 7 “Modes

Superposition Method” that the choice of the eigenvector is arbitrary. To conform to literature

we perform the scaling here.

1m~ in

T

ini ==  M

mode 1:

73.1441

T

1 = M









==

1345.0

0831.0

73.144

1
1n1 

mode 2:

28.552

T

2 = M










−
==

0831.0

1345.0

28.55

1
1n2 
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Modal Forces

)t(a)t()t()t(
~

g

T

nground

T

nquake

T

n XMΦVMΦPΦP =−== 

general case

our problem:









=

1

1
)t(aggroundV )t(a

1

1

400

040

0831.01345.0

1345.00831.0~
g

























−
−=P

)t(a~

~

)t(a
06.2

70.8~
g

2

1
g 












−=








−=P

i tilde: modal seismic masses. The corresponding

scaling factors are dimensionless. They have the

same numerical values since our mode shapes led

to unit modal masses.
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Step 4a: Modal Response – Displacement

We obtain the modal response simply by looking up the modal values from the appropriate

response spectrum.

mode 1:

T1 = 0.68 s  Sd1 = 4.1 cm

mode 2:

T2 = 0.26 s Sd2 = 0.44 cm

0.0

1.0

2.0

3.0

4.0

0.0 0.4 1.2 1.60.8

response spectrum Sd [cm]

period T [s]

 = 5 %

For the modal displacements we

use the displacement spectrum

Sd. The spectrum on the left has

been calculated from some

given acceleration record and

has no practical relevance here.
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mode 1:

T1 = 0.68 s  Sa1 = 3.79 m/s2

mode 2:

T2 = 0.26 s Sa2 = 2.80 m/s2

response spectrum Sa [m/s2]

period T [s]

0.0 0.4 0.8 1.2 1.6

0.0

1.0

2.0

3.0

4.0

5.0  = 5 %

Step 4b: Modal Response – Acceleration

For the modal accelerations we

use the acceleration spectrum

Sa. The spectrum on the left is

consistent with the displace-

ment spectrum Sd since it has

been calculated from the same

acceleration record as Sd. It has

again no practical relevance

here.
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Step 5: Displacements of the True Structure

diiinmax,i S= V

maximum nodal dofs for the i-th mode:

mode 1:

cm
80.4

96.2
1.470.8

1345.0

0831.0
max1 





=





=V

mode 2:

cm
08.0

12.0
44.006.2

0831.0

1345.0
max2 





−

=





−

=V
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Maximum Horizontal Displacements

upper floor:

cm80.408.080.4w 22

max3 =+=

lower floor:

cm96.212.096.2w 22

max2 =+=

In this case the contribution of the second mode is vanishingly small!

Question: How large is the maximum displacement of the true structure, i.e. the combination of

modes 1 and 2? Since the modal values do not occur at the same time, we cannot simply add up

the two modal contributions. Instead we use the SRSS method which is justified since the two

eigenfrequencies lie far apart. We get two absolute maximum values which means:

• Both +wmax and –wmax occur; we must design for both cases.

• The extreme values w2max and w3max do not come from a common deformation pattern. It would

be incorrect to plot a deformed configuration based on these two values.
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Step 6a: Stress Resultants 

via Equivalent Static Loads

aiiinmax,i S= V
maximum nodal acceleration dofs for the i-th mode:

corresponding equivalent inertial mass forces:

max,imax,mi VMF =

There are two options to calculate the inner forces. Option A takes the maxim accelerations and

calculates the resulting inertial forces. These inertial forces can be applied as static loads to the

structure since the accelerations already contain the dynamic effects.
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acceleration:

2max,1
s

m

43.4

74.2
70.370.8

1345.0

0831.0






=





=V

inertial force:

kN
2.177

6.109

43.4

74.2

400

040
max,1m 





=











=F

Inertial Forces Mode 1

177.2 kN

109.6 kN

equivalent static forces
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acceleration:

inertial force:

kN
8.18

8.30

47.0

77.0

400

040
max,2m 





−

=





−





=F

Inertial Forces Mode 2

2max2
s

m

47.0

77.0
77.206.2

0831.0

1345.0






−

=





−

=V

equivalent static forces

18.9 kN

30.8 kN
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Calculation of Stress Resultants

Stress resultants N, Q, M: 

• accelerations mode-wise

• loads mode-wise

• N, Q, M mode-wise

• SRSS for Nmax, Qmax, Mmax

Stresses: 

• accelerations mode-wise

• loads mode-wise

• N, Q, M mode-wise

• s, t mode-wise

• SRSS for smax, tmax

The stress resultants N, Q, M can now be computed by a simple static analysis. The two modes are

treated as two load cases, i.e. we compute the stress resultants for each mode separately. To find

the total maximum inner forces we perform an SRSS superposition of the mode-wise computed

modal stress resultants. Again we must design to both ±Smax.

The SRSS superposition must always be the last step. It would be wrong to compute the stresses τ

or σ from the maximum inner force Nmax, Qmax or Mmax. Instead we compute the stresses mode-

wise and perform the SRSS superposition directly for the modal stresses.
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Step 6b: Stress Resultants

via Nodal Displacements

Option B for the calculation of inner forces takes the maxim displacements and computes the

resulting inner forces directly from the nodal displacements of the finite elements. Option B is the

natural way for an FE-program. A design response spectrum in an engineering code usually is

given only as an acceleration spectrum Sa. We need, however, a displacement response spectrum

Sd for option B. In absence of a separate definition of Sd we derive Sd as a pseudo-spectrum from

Sa via the relationship:

2

a
d

S
S


=
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Inner Force for Element 1

general relationship for the 2D beam (element i):

iii vks =

element 1 (only w2):

 














 −−

=















−

=

















−−

2.76.177

6.38.88

2.76.177

6.38.88

1012.01096.2

6000

3000

6000

3000

M

Q

M

Q

22

2

2

1

1

mode 1 mode 2

mode 1 mode 2

SRSS: kNm7.1772.76.177M 22

max =+=
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Seismic Design Philosophy

A building subjected to forces must equilibrate these external excitations with inner forces

residing in its members. Therefore it is often a suitable means to strengthen members to

reduce stresses for given stress resultants. That is not true for structures under imposed

displacements. A statically indeterminate structure develops inner forces as a result of

movements of the supports, while a statically determinate one, although being less stiff,

deforms freely without any inner forces.

So rigid buildings cannot evade the imposed displacement and develop large inner forces

which lead to damage and collapse. An earthquake design therefore aims at creating a

compromise between stiffness and ductile behaviour. Often it is better to design a structure

such that it can evade the imposed movements or dissipate much energy in a controlled

fashion. This aim can be achieved by introducing or designing special seismic members or

elements. Design options are for instance:

• Decoupling of substructures by non-monolithic design.

• Introduction of specific members which dissipate energy by inelastic deformation.

• Active and passive damping systems. This topic will be addresses in Lecture 13 “Tuned

Mass Dampers”.

A more detailed discussion of seismic design philosophies lies outside the scope of this lecture

series.


