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Lecture Series:

Structural Dynamics

Lecture 10:
Finite Element Formulation
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Overview

* Principle of virtual work
* Discretization

* Examples:
e truss element
e beam element

e Consistent and lumped mass models

* Rayleigh Damping
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Principle of Virtual Work

Static problem:
Total work = work of (external loads + internal stresses)

SW = jSqudV—jésTch - 0
V V

Dynamic problem:
Total work = work of (external loads + inertial mass forces + internal stresses)

oW = JSqudV—JSqum dV—jSaTGdV =0
V V V
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Review: Discretization of the Static Problem

Displacement interpolation:

u = Qv| o shape functions, v: nodal dofs

Strain interpolation:

€ = Dku — DkQV = B V| D,: kinematic operator

Stress interpolation:

o = Eg = EB V| E: elasticity matrix
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Discretization of the Work Principle

Weak form of the equilibrium condition:

SW = SVT{J.QTpdV—J.BTEBdVV} =0
\Y \Y

. 3

Element stiffness equation:

Sv'[q-kv| =

o/m® kv

q

Element load vector:

Element stiffness matrix:

q = IQTp dVv
V

k = J'BTEBdV
V
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Treatment of Inertial Forces

Work of inertial forces:

SW_ = j Su'f_dV
V

NEWTON‘s law

f. = pu

. 3

Discretization:

Element mass matrix:

m = IQTdeV
V

1

Discretized work term:

u=Qvmf

pQv

SW. SVTIQTdevv — 5v'm¥
Vv
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Element Equation of Motion

Principle of virtual work:

v [g-mv-kv| =0

l EULER-LAGRANGE equation

Element equation of motion:

mv+kv = q(t)
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Example 1: Plane Truss Element

tY 7\ geometry:
1
o dx = Lds
[
2

j\lnf nodal dofs:

u1 Wl
» X Vu — u VW — W
2 2

shape functions:

U(S) — ul(l—S) + UZS — [1—5 S]Vu We can use the same linear shape

functions which we have already used
for the derivation of the stiffness matrix.

w(s) = w,(1-s)+w,s = [1-s s]v,,
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Derivation of the Mass Matrix for the u-Direction

General expression for a truss:

IQ 0Q dV = ”pQT dAdx_pAIQTQ dx

N

p: mass per unit length of the truss

1 =pA

For the linear shape function:

1
1-s 2 1
jQIQu dx = I [1-s s]Lds = L
v S 6|1 2

0
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Element Mass Matrix

For the 2 directions:

M2 1] M2 1
mu‘EL 2_-mw‘3{1 2}

Assemble partial matrices to local element mass matrix:

2 01 0]

mass of the element:

M = pLA

(@)
O - O
O DN
o N O
NN O -
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Transformation to Global DOF's

Transformation of displacements:

VIocal — TVglobal

We have derived a transformation rule for the element stiffness matrix. This general rule holds
for all types of matrices, also for the mass matrix:

— TT InIocalT

Inglobal

A body has the same translational inertia in all directions, while the rotational inertia (the mass
moments of inertia ®) depends on the geometrical shape and is different in different directions.
The truss element is a special case because we have no rotational degrees of freedom. The mass
matrix is therefore invariant with respect to rotations of the coordinate system:

Inglobal — Inlocal
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Example 2: Beam Element

Z,W
__arbitrary point P

/// Y,V

» X,U

A

Kinematics for the beam element without distortion:

u*(X, y’ Z) — U(X) 4+ (Py (X) L7 — (pz (X) . y The cross section remains plane. We can

express the displacements of an arbitrary
point within the cross section by the

* . deformation variables of the beam axis:
v (X’ y’ Z) T V(X) (PX (X) z extensional displacement wu, bending
deflections v and w, torsional rotation ¢_

W* (X, Y, Z) = W(X) + @, (X) -y and bending rotation ¢, and ¢,
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Virtual Work of the Inertial Forces

Virtual work for the beam continuum:

SW_ = j BuTpU" + v TV +ow T pw ") dV
Vv

oW, = oW_. +W . +3W_ .

mw

Introduce kinematics of the beam:

W . = pj [(8u +89,2—-8¢,y)" (i+¢,z— ('pzy)]dA dx
Vv

SW._. = p j [(5v—50,2)" (v §,2)|dA dx
V

W = p j (5w + 50,y)" (W +, y)]|dA dx
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Cross-Sectional Moments

Assumption 1: reference system lies in the center of gravity
static moments are zero

y

S =jsz=o SzzjydAzo
A

A

Assumption 2: reference system is oriented along principal axes
deviational moment of inertia is zero

I, = —jysz =0
A

Remaining cross-sectional moments

_ _ |2 _ |52
A—jdA Izz—jy dA Iyy—jz dA| | =1, +1,
A

p
A A
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Specialised Virtual Work

Introduce cross-sectional moments:

oW

= pj(SUAU+8VAV+8WAW+8(pXIpépx + 8,1, 6, + 8¢, 1,,)dx
L

BERNOULLI hypothesis: no shear deformations

(Py — _W’ P, = +V’

Interpolation functions must be chosen for:
e the longitudinal displacement u,

* the torsional rotation ¢_,

* the bending displacements v and w.
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Part 1+2: Extensional and Torsional Vibration

The extensional deformation can be treated exactly as in the truss element. The work for ¢, is
formally identical to the work for u. So we can choose the same linear shape function to
interpolate between the two nodal degrees of freedom ¢,; and ¢,,. We can copy the matrix for u
and substitute I, for A:

M| 2
1

1 - plLT2
2_ m(Px - 6 _1

This matrix for u is only valid for the degrees of freedom u, and u,, but not for v, v,, w;, w,,
since the shape functions for v and w are cubic!

-
2_
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Part 3-1: Translational Bending Vibration

The shape functions for bending in the xz-plane (degrees of freedom w;, w,, @, ©,,) can be
copied from the derivation of the linear stiffness matrix:

1—-3s® +2s°
(-s+2s° —s°)L
3s® — 2s°
(s*—s°)L

156 —-22L 54 13L
M |—22L 412 -13L -3L2
=) |m,,, 20| 54 —13L 156 22L
131 -3 22L 417 |

oW, = ijWAWdX
L
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Part 3-2: Rotational Bending Vibration

OW_ = jS@y |, @, dX
L

3 8

36 -3L -36 -3L
. _ply,|-8L 412 3L -2
W& 30L|-36 3L 36 3L
-3L -L* 3L 4L°]

The matrix for v can be derived in a wholly analogous manner! All matrices together

comprise the element mass matrix of the beam.
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Consistent Mass Matrices

The same interpolation function has been used for the
stiffness and the mass matrix.

: &

Both matrices are based on the same assumptions.

. &

They are consistent with respect to the displacement interpolation.

: &

Consistent Mass Matrix (CMM)
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Advantages/Disadvantages of CMM

Advantages:

Each nodal degree of freedom is automatically assigned its
correct mass. In particular the rotational degrees of freesdom
are also given inertial moments of mass.

Disadvantages:

The storage requirement is high: a system mass matrix has the
same storage image (band matrix, skyline matrix, sparse matrix,
...) and takes up the same storage space.
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Alternative: Lumped Mass Matrix

In a lumped mass matrix (LMM) the element masses are “lumped* into the nodes, i.e.
we have pure nodal masses. The system mass matrix becomes a diagonal matrix and

can be stored as a vector.

The storage requirement is greatly reduced, almost to zero with respect to a
“normally” populated matrix.

Example: truss element \I,,..; =

o~ O o
~ O O O
<

1
1
‘ mlumped :? 1
1

o O O B
o o —» O
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Problems with Lumped Mass Matrix

The translational masses are relatively easy to define, the
rotational masses are not obvious. Often they are neglected.

2 .

The lumped mass matrix is not positive definite for M, = 0!

* Eigenfrequency analysis:

No problem, there can be zeroes on the diagonal. Only: the number of eigenfrequen-
cies is limited to the rank of the mass matrix.

 Direct time integration:

Fatal defect since for the computation of the initial acceleration it is necessary to solve
a system of equations with M as the coefficient matrix. Therefore it must not be
singular! = Rotational masses are mandatory!
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Example I: Simply Supported Beam

7 7
i L=4.0m T

HE-A 500: A =198 cm?
I=86970 cm*
E =21000 kN/cm?
m = 0.1584 to/m

analytical solution for
the i-th eigenfrequency:

i’ |El f, =105.4185 Hz

f — ) f,=421.6739 Hz
I 2

2L°\m f, = 948.7662 Hz
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Example I: Simply Supported Beam

eigenfrequency 1 [Hz] - analytical solution: 105.4185 Hz

1 2 4 8 16 32
consistent 117.01 105.83 105.45 105.42 105.42 105.42
lumped - 104.65 105.39 105.42 105.42 105.42
eigenfrequency 2 [Hz] - analytical solution: 421.6739 Hz
1 2 4 8 16 32
consistent | 536.19 468.02 423.34 421.78 421.68 421.67
lumped - - 418.61 421.54 421.67 421.67
eigenfrequency 3 [Hz] - analytical solution: 948.7662 Hz
1 2 4 8 16 32
consistent - 1176.4 966.10 949.99 948.84 948.77
lumped - - 888.80 947.02 948.68 948.76

11€
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FE-Models for Surface-Like Structures

generic slab element with 4 generic nodes

There exist a multitude of slab and shell element types, for shell
theories without (KircHHOFF/LOVE-type theories) and with
(MINDLIN/REISSNER-type theories) shear deformations. We use
here the element type Ase4 developed by U. Montag (Konzepte zur
Effizienzsteigerung numerischer  Simulationsalgorithmen  fir
elastoplastische Deformationsprozesse, Dissertation, Bochum
1997). It takes shear deformations into account via a so-called
assumed strain formulation. The element uses bilinear shape
functions for the three displacement components and the two
?, rotations.

Since we do not know, except for these rather general mathematical properties, how the element performs, we
have to run a set of suitable benchmarks for which we have either analytical solutions or other numerical
reference solutions. With such benchmarks we can gain insight into the strengths or weaknesses of the element
types in our element library.

The solution for a rectangular slab, supported along all four sides by hinged supports, is known for a
KircHHOFF slab theory. The influence of the shear deformations, however, are small for a thin slab so we can
use this solution as benchmark. We expect the Ase4-solution to be marginally softer then the KiRCHHOFF
solution. The mass stays the same, so the eigenfrequencies without shear deformations are somewhat larger

than the ones computed by a shear theory.
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University of Wuppertal, Institute for Structural Mechanics and Numerical Methods, Prof. Dr.-Ing. W. Zahlten & & & & page 25




Example 1I: Hinged Rectangular Slab

4 hinged support
dimensions: L _=8.0m, Ly =4.0 m,
material properties: E =3.0 107 kN/m?
L, | hinged support hinged support v=0.2
p =2.5 to/m?3
slab thickness: h=0.1 m
-+ hinged support
4 LX ¢_
X X analytical solution (without shear strains)
analytical solution for a KiRcHHOFF slab theory
» 5 eigenfrequency f [Hz]
o n!llN N B waves
f=—=—=J]2X| +|—=2 — |-y 12.525 | 20.040 | 32.565 | 42.585 | 50.100
2n 2| L, L, | [Veh
N, 1 2 3 1 2
There exist an infinite number of eigenmodes with
different wave numbers N, and N,. Ny 1 1 1 2 2

NeNUM

University of Wuppertal, Institute for Structural Mechanics and Numerical Methods, Prof. Dr.-Ing. W. Zahlten & & & & page 26




Element Mesh: 2 x 2

nonsense! —~—

nonsense! T nonsense! —

Only the 1°* mode models the physical reality, i.e.
a vibration mode with one wave in both
directions. The other modes are nonsense modes
resulting from rotational degrees of freedom.
These modes have to be discarded. The coarse
2x2 mesh can only capture, albeit badly, one
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Element Mesh: 4 x 4

Now all five modes are physically significant. For
mode 1 we can test the convergence: the change
form mesh02 to mesh04 is significant, so f, from
mesh02 was too inaccurate. Modes 3 and 4 are
switched with respect to the analytical solution.
The non-smoothness of the mode shape reveals
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Element Mesh: 8 x 8

old new

58,49 45.74

The sequence of modes now follows the correct
sequence of the analytical solution. The shapes
are getting smoother. For mode 1 we are getting
nearer to convergence (5.7 % change from
mesh04 to mesh08), while the higher modes still
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16 x 16

Element Mesh

mode 2
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All modes converge. The higher modes converge

slower than the lower ones, since it is more

difficult to capture their more complex wave

by the bilinear shape function within

each element.
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32 x32

Element Mesh

imum error is down to 1.4 % - we run
mesh refinement more to attain an

The max

t one
accuracy wh
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m
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whether
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converge to frequencies which lie a little bit

below the ones from the KiRCHHOFF slab theory.
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64 x 64

Element Mesh
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Summary

The convergence test on the previous pages is only valid for the element type ASE4. We must
repeat the test if we want to use a different element type where we lack experience regarding its
performance. Below are tabled the results for the classic nonconforming 4-node slab element with
cubic shape functions with KIRCHHOFF slab theory. The nonconformity introduces additional
relative rotations along the element borders which reduce the element stiffness. The
approximation is therefore too soft and we converge, except for the 1% super-coarse mesh, from
below to the analytical solution.

convergence test of the nonconforming KiRCHHOFF element
mesh f, [Hz] f, [Hz] f, [Hz] f, [Hz] f; [Hz]
02 11.070 17.933 35.715 46.666 58.553
04 12.089 18.868 31.120 40.788 44.279
08 12.408 19.680 31.943 42.097 48.355
16 12.495 19.945 32.388 42.457 49.633
32 12.517 20.016 32.519 42.552 49.981
64 12.523 20.034 32.553 42.577 50.079
exact 12.525 20.040 32.565 42.585 50.100
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Structural Damping

For a general MDOF system the damping is represented by the damping matrix C.
The damping can be split into a distributed damping C, and concentrated nodal or
element damping C.:

C =C+C,

Special damping laws must be defined for the nodal dampers. The distributed
damping is, in absence of more realistic yet manageable damping models, in almost all
cases captured by the so-called RAYLEIGH damping.
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RAYLEIGH Damping

We assume that the damping is proportional to mass and stiffness. Then the damping
depends only on two unknown free parameters a,, and o,. We need two conditions to

determined these free parameters which we find in modal space.

C=o,M+aoK

We know from Dynamics I that both M and K become diagonal in modal space. C,
being a linear combination of K and M, becomes also diagonal in modal space:

aMmi + oK = Ziia)imi
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Computation of the RAYLEIGH Coefficients

Two modal damping ratios & and ci,j for two arbitrarily chosen modes can be fixed by
us to identify the parameters o, and o,;:

. 2
modei: (1) |QL,, + Oy O 2.

> ®; # O,!
mode j: (2) U.M + G‘K(Dj = 2§J(DJ
ijmjooiz—iiooico? 3 Ziimi—ﬁjmj
Oy = 2 2 2 Uk = 2 2
O — O ;] —
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Special Cases

Case A: stiffness-proportional damping

S

6}

Case B: mass-proportional damping

oy = 250
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Damping Element

—> — u,| The damping element has two nodes with a dashpot in
@ o between. Its viscous damping properties are described by a
1 2 damping constant ¢ (not by a damping coefficient &),
damping constant ¢ measured in [kNs/m].
damping force damping law
F. < : »F| |F.=Cc-Au=c-(u,—-u,)

nodal equilibrium

1 2
S, > o »F F < O > S,
S, - F C —cl|u .
element damping matrix = = . - — .
S, F —-Cc c||u, S=C'V
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Flow Chart for Introduction of Damping
in an FE-Analsyis

discretize ‘ eigenfrequency analysis:
structure o;, D,

. =

visualise modes @,

"

choose 2 modes i, j
with &; and &;

j’ perform TD

calculate oy, and o ‘ FE-analysis
with a,; and o
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Summary

Inertial effects are captured in the element mass matrix. There are two alternative formulations:

The consistent mass matrix. Here we use the same shape functions for the discretization of the
work of the inertial forces as we used for the stiffness matrix. We get a fully populated element
matrix where each degree of freedom, also rotations, is given some mass contribution. The
storage image on the system level is identical to the one of the system stiffness matrix.

The lumped mass matrix. Here we lump the element mass into nodal masses at each node. The

storage requirement is greatly reduced, but it is not always evident how to distribute the total
element mass to the nodes for more complex element types with many nodes.

Both formulations must converge to the true solution in the case of more and more refined
element meshes. One good test of a numerical model therefore consists in running both
alternatives and comparing the results. Larger discrepancies indicate some defect in our
modelling.

Damping is usually captured for direct time integration via mass- and stiffness-proportional
damping: RAYLEIGH damping. Here we can control the damping ratios of two modes — the other
modes are automatically damped. In addition to the global structural damping via the RAYLEIGH
concept we can also introduce discrete dampers. The damping matrix of a viscous damper is
identical to the stiffness matrix of a couple spring where we replace the spring stiffness with the
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