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OverviewOverview

• Principle of virtual work
• Discretization
• Examples:

• truss element
• beam element

• Consistent and lumped mass models
• Rayleigh Damping
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Principle of Virtual WorkPrinciple of Virtual Work

Static problem:
Total work = work

 
of (external loads + internal stresses)

Dynamic problem:
Total work = work

 
of (external loads + inertial mass forces + internal stresses)

0dVdVW
V

T

V

T =δ−δ=δ ∫∫ σεpu

0dVdVdVW
V

T

V

m
T

V

T =δ−δ−δ=δ ∫∫∫ σεfupu
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Review: Review: DiscretizationDiscretization
 

of the Static Problemof the Static Problem

Displacement interpolation:

Strain interpolation:

Stress interpolation:

vu Ω=

vBvDuD === Ωε kk

vEBE == εσ

Ω: shape functions, v: nodal dofs

E: elasticity matrix

Dk

 

: kinematic operator
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DiscretizationDiscretization
 

of the Work Principleof the Work Principle

0dVdVW
V

T

V

TT =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−δ=δ ∫∫ vEBBpv Ω

Weak form of the equilibrium condition:

Element stiffness equation:

[ ] 0T =−δ vkqv qvk =

∫=
V

T dVpq Ω

Element load vector:

∫=
V

T dVEBBk

Element stiffness matrix:
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Treatment of Inertial ForcesTreatment of Inertial Forces

∫δ=δ
V

m
T

m dVW fu

uf &&ρ=m

vu Ω= vf &&Ωρ=m

Work of inertial forces:

NEWTON‘s
 

law

Discretization:

vmvvv &&&& T

V

TT
m dVW δ=ρδ=δ ∫ ΩΩ

Discretized
 

work term:

Element mass matrix:

∫ ρ=
V

T dVΩΩm
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Element Equation of MotionElement Equation of Motion

Principle of virtual work:

[ ] 0T =−−δ vkvmqv &&

)t(qvkvm =+&&
Element equation of motion:

EULER-LAGRANGE

 

equation
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Example 1: Plane Truss ElementExample 1: Plane Truss Element

X

Y

2

1
s, x

u1

w1

u2

w2

L

shape functions:

[ ] u21 ss1su)s1(u)s(u v−=+−=

[ ] w21 ss1sw)s1(w)s(w v−=+−=

geometry:

dsLdx =

nodal dofs:

⎥⎦
⎤

⎢⎣
⎡=

2

1
u u

uv ⎥⎦
⎤

⎢⎣
⎡=

2

1
w w

wv

We can use the same linear shape 
functions which we have already used 
for the derivation of the stiffness matrix. 
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Derivation of the Mass Matrix for the uDerivation of the Mass Matrix for the u--DirectionDirection

General expression for a truss:

∫∫ ∫∫ ρ=ρ=ρ=
L

u
T
u

L A

u
T
u

V

u
T
uu dxAdxdAdV ΩΩΩΩΩΩm

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=−⎥

⎦

⎤
⎢
⎣

⎡ −
= ∫∫ 21

12
6
LdsLss1

s
s1

dx
1

0V

u
T
u ΩΩ

For the linear shape function:
Aρ=μ

µ: mass per unit length of the truss
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Element Mass MatrixElement Mass Matrix

For the 2 directions:

⎥⎦
⎤

⎢⎣
⎡= 21

12
6
M

um ⎥⎦
⎤

⎢⎣
⎡= 21

12
6
M

wm

Assemble partial matrices to local element mass matrix:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

2010
0201
1020
0102

6
Mm mass of the element:

ALM ρ=
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Transformation to Global Transformation to Global DOFsDOFs
Transformation of displacements:

globallocal vTv =

We have derived a transformation rule for the element stiffness matrix. This general rule holds 
for all types of matrices, also for the mass matrix:

TmTm local
T

global =

A body has the same translational inertia in all directions, while the rotational inertia (the mass 
moments of inertia Θ) depends on the geometrical shape and is different in different

 

directions. 
The truss element is a special case because we have no rotational degrees of freedom. The mass 
matrix is therefore invariant with respect to rotations of the coordinate system:

localglobal mm =
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ExampleExample
 

2: 2: BeamBeam
 

ElementElement

Kinematics for the beam element without distortion:

y)x(z)x()x(u)z,y,x(u zy
* ⋅ϕ−⋅ϕ+=

z)x()x(v)z,y,x(v x
* ⋅ϕ−=

y)x()x(w)z,y,x(w x
* ⋅ϕ+=

x,u
y,v

z,w
arbitrary point P

The cross section remains plane. We can 
express the displacements of an arbitrary 
point within the cross section by the

 

 
deformation variables of the beam axis: 
extensional displacement u, bending 
deflections v and w, torsional

 

rotation φx

 
and bending rotation φy

 

and φz

 

.
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Virtual Work of the Inertial ForcesVirtual Work of the Inertial Forces

Virtual work for the beam continuum:

∫ ρδ+ρδ+ρδ=δ
V

*T**T**T*
m dV)wwvvuu(W &&&&&&

Introduce kinematics of the beam:

[ ]∫ ϕ−ϕ+δϕ−δϕ+δρ=δ
V

zy
T

zymu
dxdA)yzu()yzu(W * &&&&&&

*** mwmvmum WWWW δ+δ+δ=δ

[ ]∫ ϕ−δϕ−δρ=δ
V

x
T

xmv dxdA)zv()zv(W * &&&&

[ ]∫ ϕ+δϕ+δρ=δ
V

x
T

xmw
dxdA)yw()yw(W * &&&&
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Assumption 1:
 

reference system lies in the center
 

of gravity
static moments are zero

0dAzS
A

y == ∫ 0dAyS
A

z == ∫

0dAyzI
A

yz =−= ∫

∫=
A

2
zz dAyI ∫=

A

2
yy dAzI∫=

A

dAA
zzyyp III +=

CrossCross--Sectional MomentsSectional Moments

Assumption 2:
 

reference system is oriented along principal axes
deviational moment of inertia is zero

Remaining cross-sectional moments
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SpecialisedSpecialised
 

VirtualVirtual
 

WorkWork

Introduce cross-sectional moments:

∫ ϕδϕ+ϕδϕ+ϕδϕ+δ+δ+δρ=δ
L

zzzzyyyyxpxm dx)IIIwAwvAvuAu(W &&&&&&&&&&&&

BERNOULLI

 

hypothesis: no shear deformations

wy ′−=ϕ vz ′+=ϕ

Interpolation functions must be chosen for:
• the longitudinal displacement u,
• the torsional

 
rotation ϕx

 

,
• the bending displacements v and w.
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Part 1+2: Extensional and Part 1+2: Extensional and TorsionalTorsional
 

VibrationVibration

The extensional deformation can be treated exactly as in the truss element. The work for φx

 

is 
formally identical to the work for u. So we can choose the same linear shape function to

 

 
interpolate between the two nodal degrees of freedom φx1

 

and φx2

 

. We can copy the matrix for u 
and substitute Ip

 

for A:

⎥⎦
⎤

⎢⎣
⎡= 21

12
6
M

um

This matrix for u is only valid for the degrees of freedom u1

 

and u2

 

, but not for v1

 

, v2

 

, w1

 

, w2

 

, 
since the shape functions for v and w are cubic!

⎥⎦
⎤

⎢⎣
⎡ρ

=ϕ 21
12

6
LIp

x
m
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Part 3Part 3--1: 1: TranslationalTranslational
 

Bending VibrationBending Vibration

The shape functions for bending in the xz-plane (degrees of freedom w1

 

, w2

 

, ϕy1

 

, ϕy2

 

) can be 
copied from the derivation of the linear stiffness matrix:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−+−
+−

=Ω

L)ss(
s2s3

L)ss2s(
s2s31

32

32

32

32

∫δρ=δ
L

m dxwAwW &&

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−−
−

=
22

22

1w

L4L22L3L13
L22156L1354
L3L13L4L22
L1354L22156

420
Mm
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Part 3Part 3--2: Rotational Bending Vibration2: Rotational Bending Vibration

∫ ϕδϕ=δ
L

yyyym dxIW &&

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−−
−−−

ρ
=

22

22
yy

2w

L4L3LL3
L336L336
LL3L4L3
L336L336

L30
I

m

The matrix for v can be derived in a wholly analogous manner! All matrices together 
comprise the element mass matrix of the beam.
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Consistent Mass MatricesConsistent Mass Matrices

The same interpolation function has been used for the
stiffness and the mass matrix.

Both matrices are based on the same assumptions.

They are consistent with respect to the displacement interpolation.

Consistent Mass Matrix (CMM)
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Advantages/Disadvantages of CMMAdvantages/Disadvantages of CMM

Advantages:
Each nodal degree of freedom is automatically assigned its 
correct mass. In particular the rotational degrees of freesdom

 are also given inertial moments of mass.

Disadvantages:
The storage requirement is high: a system mass matrix has the 
same storage image (band matrix, skyline matrix, sparse matrix, 
...) and takes up the same storage space.
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Alternative: Lumped Mass MatrixAlternative: Lumped Mass Matrix

In a lumped mass matrix (LMM) the element masses are “lumped“
 

into the nodes, i.e. 
we have pure nodal masses. The system mass matrix becomes a diagonal matrix and 
can be stored as a vector.

The storage requirement is greatly reduced, almost to zero with respect to a 
“normally”

 
populated matrix.

Example: truss element

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0100
0010
0001

2
M

lumpedm

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
1
1
1

2
M

lumpedm
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Problems Problems withwith
 

LumpedLumped
 

MassMass
 

MatrixMatrix

The translational masses are relatively easy to define, the
rotational masses are not obvious. Often they are neglected.

The lumped mass matrix is not positive definite for Mrot

 

= 0!

• Eigenfrequency
 

analysis:
No problem, there can be zeroes on the diagonal. Only: the number of eigenfrequen-

 cies
 

is limited to the rank of the mass matrix.

• Direct time integration:
Fatal defect since for the computation of the initial acceleration it is necessary to solve 
a system of equations with M as the coefficient matrix. Therefore it must not be 
singular!  ⇒ Rotational masses are mandatory!
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ExampleExample
 

I: I: SimplySimply
 

SupportedSupported
 

BeamBeam

HE-A 500:
 

A = 198 cm2

I = 86970 cm4

E = 21000 kN/cm2

m = 0.1584 to/m
analytical

 
solution

 
for

the
 

i-th
 

eigenfrequency:

m
EI

L2
if 2

2

i
π

=
f1

 

=
 

105.4185 Hz
f2

 

= 421.6739 Hz
f3

 

= 948.7662 Hz

L = 4.0 m
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ExampleExample
 

I: I: SimplySimply
 

SupportedSupported
 

BeamBeam

eigenfrequency 1 [Hz] - analytical solution: 105.4185 Hz

1 2 4 8 16 32

consistent 117.01 105.83 105.45 105.42 105.42 105.42

lumped - 104.65 105.39 105.42 105.42 105.42

eigenfrequency 2 [Hz] - analytical solution: 421.6739 Hz

1 2 4 8 16 32

consistent 536.19 468.02 423.34 421.78 421.68 421.67

lumped - - 418.61 421.54 421.67 421.67

eigenfrequency 3 [Hz] - analytical solution: 948.7662 Hz

1 2 4 8 16 32

consistent - 1176.4 966.10 949.99 948.84 948.77

lumped - - 888.80 947.02 948.68 948.76



University of Wuppertal, Institute for Structural Mechanics and Numerical Methods, Prof. Dr.-Ing. W. Zahlten ♣♣♣♣ page 25

FEFE--Models for SurfaceModels for Surface--Like StructuresLike Structures

ϕ
x1

1

ϕ
y1w1

ϕ
x2

2

ϕ
y2w2

ϕ
x3

3

ϕ
y3w3

ϕ
x4

4

ϕ
y4w4

generic slab element with 4 generic nodes

There exist a multitude of slab and shell element types, for shell 
theories without (KIRCHHOFF/LOVE-type theories) and with 
(MINDLIN/REISSNER-type theories) shear deformations. We use 
here the element type ASE4

 

developed by U. Montag

 

(Konzepte zur 
Effizienzsteigerung numerischer Simulationsalgorithmen für 
elastoplastische Deformationsprozesse, Dissertation, Bochum 
1997). It takes shear deformations into account via a so-called 
assumed strain formulationassumed strain formulation. The element uses bilinear shape 
functions for the three displacement components and the two 
rotations.

Since we do not know, except for these rather general mathematical properties, how the element performs, we 
have to run a set of suitable benchmarks for which we have either analytical solutions or other numerical 
reference solutions. With such benchmarks we can gain insight into the strengths or weaknesses of the element 
types in our element library.

The solution for a rectangular slab, supported along all four sides by hinged supports, is known for a 
KIRCHHOFF

 

slab theory. The influence of the shear deformations, however, are small for a thin slab so we can 
use this solution as benchmark. We expect the ASE4-solution to be marginally softer then the KIRCHHOFF

 
solution. The mass stays the same, so the eigenfrequencies

 

without shear deformations are somewhat larger 
than the ones computed by a shear theory.
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ExampleExample
 

II: II: HingedHinged
 

RectangularRectangular
 

SlabSlab

dimensions:

 

Lx

 

= 8.0 m, Ly

 

= 4.0 m,

material properties:

 

E = 3.0 107

 

kN/m2

ν

 

= 0.2
ρ

 

= 2.5 to/m3

slab thickness:

 

h = 0.1 m

analytical solution (without shear strains)

waves
eigenfrequency

 

f [Hz]

12.525 20.040 32.565 42.585 50.100

Nx 1 2 3 1 2

Ny 1 1 1 2 2

Lx

Ly hinged support

hinged support

hinged support

hinged support

h
B

L
N

L
N

22
f

2

y

y
2

x

x

ρ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡π
=

π
ω

=

analytical solution for a KIRCHHOFF

 

slab theory

There exist an infinite number of eigenmodes

 

with 
different wave numbers Nx

 

and Ny

 

.
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Element Mesh: 2 x 2Element Mesh: 2 x 2
mode 1 mode 2

mode 3 mode 4

mode 5

old new

--- 17.14 nonsense!

nonsense! nonsense!

nonsense!

Only the 1st

 

mode models the physical reality, i.e. 
a vibration mode with one wave in both

 

 
directions. The other modes are nonsense modes 
resulting from rotational degrees of freedom. 
These modes have to be discarded. The coarse 
2x2 mesh can only capture, albeit badly, one 
single mode.
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Element Mesh: 4 x 4Element Mesh: 4 x 4
mode 1 mode 2

mode 3 mode 4

mode 5

old new

17.14 13.47

old new

--- 24.30

old new

--- 58.49

old new

--- 63.70

old new

--- 68.29

Now all five modes are physically significant. For 
mode 1 we can test the convergence: the change 
form mesh02 to mesh04 is significant, so f1

 

from 
mesh02 was too inaccurate. Modes 3 and 4 are 
switched with respect to the analytical solution. 
The non-smoothness of the mode shape reveals 
their inaccuracy.



University of Wuppertal, Institute for Structural Mechanics and Numerical Methods, Prof. Dr.-Ing. W. Zahlten ♣♣♣♣ page 29

Element Mesh: 8 x 8Element Mesh: 8 x 8
mode 1 mode 2

mode 3 mode 4

mode 5

old new

13.47 12.74

old new

24.30 20.92

old new

63.70 36.87

old new

58,49 45.74

old new

68.29 53.74

The sequence of modes now follows the correct 
sequence of the analytical solution. The shapes 
are getting smoother. For mode 1 we are getting 
nearer to convergence (5.7 % change from 
mesh04 to mesh08), while the higher modes still 
show larger changes.
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Element Mesh: 16 x 16Element Mesh: 16 x 16
mode 1 mode 2

mode 3 mode 4

mode 5

old new

12.72 12.57

old new

20.92 20.23

old new

36.87 33.48

old new

45.74 43.25

old new

53.74 50.85

All modes converge. The higher modes converge 
slower than the lower ones, since it is more 
difficult to capture their more complex wave

 

 
patterns by the bilinear shape function within 
each element. 
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Element Mesh: 32 x 32Element Mesh: 32 x 32
mode 1 mode 2

mode 3 mode 4

mode 5

old new

12.57 12.53

old new

20.23 20.07

old new

33.48 32.74

old new

43.25 42.66

old new

50.85 50.16

The maximum error is down to 1.4 % -

 

we run 
just one  mesh refinement more to attain an 
accuracy which lies in the range of the shear 
deformations, so we can check whether we 
converge to frequencies which lie a little bit 
below the ones from the KIRCHHOFF

 

slab theory.
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Element Mesh: 64 x 64Element Mesh: 64 x 64
mode 1 mode 2

mode 3 mode 4

mode 5

old new

12.53 12.52

old new

20.07 20.03

old new

32.74 32.56

old new

42.66 42.52

old new

50.16 50.00

analytical solution (without shear strains)

f [Hz] 12.525 20.040 32.565 42.585 50.100

Nx 1 2 3 1 2

Ny 1 1 1 2 2
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SummarySummary

convergence test of the nonconforming KIRCHHOFF element

mesh f1

 

[Hz] f2

 

[Hz] f3

 

[Hz] f4

 

[Hz] f5

 

[Hz]

02 11.070 17.933 35.715 46.666 58.553

04 12.089 18.868 31.120 40.788 44.279

08 12.408 19.680 31.943 42.097 48.355

16 12.495 19.945 32.388 42.457 49.633

32 12.517 20.016 32.519 42.552 49.981

64 12.523 20.034 32.553 42.577 50.079

exact 12.525 20.040 32.565 42.585 50.100

The convergence test on the previous pages is only valid for the

 

element type ASE4. We must 
repeat the test if we want to use a different element type where

 

we lack experience regarding its 
performance. Below are tabled the results for the classic nonconforming 4-node slab element with 
cubic shape functions with KIRCHHOFF

 

slab theory. The nonconformity introduces additional 
relative rotations along the element borders which reduce the element stiffness. The 
approximation is therefore too soft and we converge, except for the 1st

 

super-coarse mesh, from 
below to the analytical solution.
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Structural DampingStructural Damping

For a general MDOF system the damping is represented by the damping matrix C. 
The damping can be split into a distributed damping Cdistributed damping Css and concentrated nodal or concentrated nodal or 
element damping element damping CCnn :

ns CCC +=

Special damping laws must be defined for the nodal dampers. The distributed 
damping is, in absence of more realistic yet manageable damping models, in almost all 
cases captured by the so-called RAYLEIGH

 

damping.
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RRAYLEIGHAYLEIGH
 

DampingDamping

KMC KM α+α=

We assume that the damping is proportional to mass and stiffness. Then the damping 
depends only on two unknown free parameters αM

 

and αK

 

. We need two conditions to 
determined these free parameters which we find in modal space.

We know from Dynamics I that both M and K become diagonal in modal space. C, 
being a linear combination of K and M, becomes also diagonal in modal space:

iiiiKiMi m~2k~m~c~ ωξ=α+α=
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Computation of the RComputation of the RAYLEIGHAYLEIGH
 

CoefficientsCoefficients

Two modal damping ratios ξi

 

and ξj

 

for two arbitrarily chosen modes can be fixed by 
us to identify the parameters αK

 

and αM

 

:

ii
2
iKM 2 ωξ=ωα+α

jj
2
jKM 2 ωξ=ωα+α

mode i: (1)

mode j: (2)
ω1

 

≠ ω2
 

!

2
j

2
i

2
jii

2
ijj

M 2
ω−ω

ωωξ−ωωξ
=α 2

j
2
i

jjii
K 2

ω−ω

ωξ−ωξ
=α
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Special Special CasesCases

Case
 

A: stiffness-proportional
 

damping

Case
 

B: mass-proportional
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DampingDamping
 

ElementElement

damping constant c

u1 u2

1 2

The damping element has two nodes with a dashpot in 
between. Its viscous damping properties are described by a 
damping constant c (not by a damping coefficient ξ), 
measured in [kNs/m].
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Flow Chart for Introduction of DampingFlow Chart for Introduction of Damping
in an FEin an FE--AnalsyisAnalsyis

discretize
structure

eigenfrequency analysis:
ωi

 

, Φi

visualise modes Φi

choose 2 modes i, j
with ξi

 

and ξj

calculate αM

 

and αK

perform TD
FE-analysis

with αM

 

and αK
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SummarySummary
Inertial effects are captured in the element mass matrix. There are two alternative formulations:

The consistent mass matrix. Here we use the same shape functions for the discretization of

 

the 
work of the inertial forces as we used for the stiffness matrix.

 

We get a fully populated element 
matrix where each degree of freedom, also rotations, is given some mass contribution. The 
storage image on the system level is identical to the one of the

 

system stiffness matrix.

The lumped mass matrix. Here we lump the element mass into nodal masses at each node. The 
storage requirement is greatly reduced, but it is not always evident how to distribute the total 
element mass to the nodes for more complex element types with many nodes.

Both formulations must converge to the true solution in the case

 

of more and more refined

 

 
element meshes. One good test of a numerical model therefore consists in running both 
alternatives and comparing the results. Larger discrepancies indicate some defect in our 
modelling.

Damping is usually captured for direct time integration via mass-

 

and stiffness-proportional 
damping: RRAYLEIGHAYLEIGH dampingdamping. Here we can control the damping ratios of two modes –

 

the other 
modes are automatically damped. In addition to the global structural damping via the RAYLEIGH

 
concept we can also introduce discrete dampersdiscrete dampers. The damping matrix of a viscous damperviscous damper is 
identical to the stiffness matrix of a couple spring where we replace the spring stiffness with the 
damping constant.
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