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OverviewOverview

• Transformation of the solution domain

• Complex solution of the SDOF oscillator under harmonic loads

• Frequency Domain Approach:

• Example
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Transformation of a Problem: IntegrationTransformation of a Problem: Integration

Mathematical problem: integration of a non-trivial function

?dx
x1

1
I

2∫ =
−

=

The solution is not obvious!

Transformation of the problem:

Substitution of x by a suitable coordinate transformation

zsinx = dzzcosdx =
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Solution of Solution of thethe TransformedTransformed Problem andProblem and

ReRe--TransformationTransformation

zdzdzzcos
)z(sin1

1
I

2
==

−
= ∫∫

re-substitution

)xarcsin(I =

The original (difficult) problem became much easier to solve by transforming it 

into a more suitable solution domainsolution domain. A re-transformation then yields the desired 

solution. This technique is not restricted to integration but can be applied to any 

problem. 

The integration is now trivial!
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GeneralisationGeneralisation

original problem:

difficult to solve

transformed problem:

easier to solve
transformation

transformed

solution

solution method

re-transformation
desired

solution

direct solution:

difficult
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OutlookOutlook

We have already encountered several methods to calculate the response of SDOF 

and MDOF systems to different types of loading, e.g. the DDUHAMELUHAMEL integralintegral, the 

mode superpositionmode superposition technique or direct time integrationdirect time integration. All these techniques have 

one thing in common: they work in the time domaintime domain. That mean that we solve the 

equation in such a way that we obtain immediately the response as a function of function of 

timetime.

An alternative to the time domain approach is the so-called frequency domainfrequency domain

approach. This consists in transforming the problem into another solution domain, 

viz. the frequency domain where we obtain the response not as a function of time 

but as a function of frequencyfunction of frequency. We then transform the frequency domain solution 

back into the time domain to obtain the ‘usual’ time domain response. The 

frequency domain approach allows us to capture some effects which cannot be 

modelled in the time domain.

The first step in constructing this method consists in formulating harmonic 

vibrations as complex vibrations. Let’s see what we mean by that. 
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Representation of Harmonic Oscillations in theRepresentation of Harmonic Oscillations in the

Complex RealmComplex Realm

)tsin(v̂)t(v ψ+ω=

An oscillating structure, e.g. a mast, is a phenomenon in nature. We can observe the vibration 

with our naked eye simply by looking at it. If we measure it, we obtain a time function v(t) 

which assigns a specific value v to each time instance t. These values v are always real numbersreal numbers, 

e.g. v = 2.3 mm. There is no imaginary part of v: what would be the meaning of v = (3+4i) mm?

Of special interest is a harmonic oscillation in general form: it is given by a sine with a circular 

frequency ω and with a phase ψ: 

Now we remember that any complex number can be expressed in the GAUSSIAN number plane 

by its amplitude r and its phase φ:

)sini(cosrz ϕ+ϕ=

We observe a certain correspondence between the physical oscillation and the imaginary part of 

a complex number: both are described by a sine function.
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))tsin(i)t(cos(v̂)t(v ψ+ω+ψ+ω=

Now we define the complex oscillation complex oscillation vv such that the imaginary part is identical to the physical 

oscillation in nature: 

tii)t(i eev̂ev̂)t(v ωψψ+ω ==

We use EULER’s formula to express the complex oscillation in exponential form:

The exponential complex form allows us to split phase ψ and frequency ω into separate 

multiplicative terms. Such a separation is not possible for the original real sine function. The 

product of the two terms for the amplitude and the phase can be interpreted as a complex 

number in their own right, the complex amplitudecomplex amplitude. The complex amplitude subsumes both the 

physical amplitude, e.g. in [mm], and the phase angle.

tiev̂)t(v ω=)sini(cosv̂ev̂v̂ i ψ+ψ== ψ
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Extraction of the Extraction of the „„TrueTrue““ OscillationOscillation

The real oscillation is the imaginary part of the complex oscillation:

)v̂(mI)v̂(Rev̂v̂ 22 +==
)v̂(Re

)v̂(Im
tan =ψ

))t(v(mI)t(v =

The real amplitude and phase result from the absolute value and phase of the complex 

oscillation:

Where does the complex oscillation come from? In the next step we will demonstrate that it is 

possible to solve differential equations in the complex realm which results in the solutions being 

complex functions. 
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Forced Vibration under Harmonic LoadingForced Vibration under Harmonic Loading

Harmonic loading was the single most important load type since it produced the effect of 

resonance. Periodic loading could be expressed as a superposition of evenly spaced harmonics. In 

this lecture we will see that also transient responses can be expressed by harmonics via a FOURIER

integral. To achieve this insight we have to solve the SDOF oscillator under harmonic loading in 

the complex realm. We recapitulate the time domain solution: a harmonic load with load 

frequency Ω produces a response with the same frequency which is shifted by the phase angle φ. 

The displacement amplitude can be expressed by the static solution amplified by the dynamic 

amplification V1.

equation of motion:

)tsin(p̂vkvcvm Ψ+Ω=++ &&&

harmonic load:

)tsin(p̂)t(p Ψ+Ω=

solution

)tsin(v̂)t(v ϕ−ψ+Ω=

dynamic amplification:

stat1
222

stat vV
)1()2(

1
vv̂ ⋅=

η−+ξη
=

phase angle:

21

2
tan

η−

ξη
=ϕ
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Complex Differential Equation of MotionComplex Differential Equation of Motion

ti)t(i ep̂ep̂)t(p ΩΨ+Ω ==

complex load:real load:

)tsin(p̂)t(p ψ+Ω=

complex load amplitude:

Ψ= iep̂p̂

complex equation of motion:

tiep̂vkvcvm Ω=++ &&&

We extend the true real load by adding a 

fictitious cosine part and integrating the sine 

load in the imaginary part. The load phase ψ can 

be extracted into the complex load amplitude so 

that the time-dependent part of p(t) contains 

only a complex harmonic function without 

phase.
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Trial Function for DisplacementsTrial Function for Displacements

ti)t(i ev̂ev̂)t(v Ωϕ+Ω ==

tiev̂i)t(v ΩΩ=&

ti2 ev̂)t(v ΩΩ−=&&

ϕ= iev̂v̂

displacements: complex displacement amplitude:

velocities:

accelerations:

We choose a trial function which has the same frequency as the load but a different phase φ:
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Solution of the Equation of MotionSolution of the Equation of Motion

p̂v̂}icmk{ 2 =Ω+Ω−

titititi2 ep̂ev̂kev̂icev̂m ΩΩΩΩ =+Ω+Ω−

Ω+Ω−
=

icmk

1
p̂v̂

2

complex equation of motion:

tiep̂vkvcvm Ω=++ &&&

substitute trial functions

solve for complex displacement amplitude

divide by the frequency term
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Transfer FunctionTransfer Function

222

2

)c()mk(

icmk
p̂v̂

Ω+Ω−

Ω−Ω−
=

Elimination of the imaginary part in the denominator:

p̂)i(Hv̂ Ω=

H is called transfer functiontransfer function. A transfer function relates the complex amplitudecomplex amplitude of an input processinput process

to the complex amplitude of an output processoutput process. The system, in our case the oscillator, changes both 

amplitudeamplitude and phasephase of the input process. The transfer function, being complex, contains the entire 

information in one single function. It is a function of the frequencyfrequency: harmonics of different 

frequencies are differently amplified and phase-shifted. A transfer function contains the entire 

properties of the system in question. In our case these properties regard the mechanical properties 

of the oscillator: we speak of the mechanical transfer functionmechanical transfer function. Transfer functions are a 

fundamental aspect of dynamic systems.
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Transfer Function with Frequency RatioTransfer Function with Frequency Ratio

ω

Ω
=η

frequency ratio:

})2()1({k

2i)1(
)i(H

222

2

ξη+η−

ηξ−η−
=Ω

transfer function:

In Lecture 5 we introduced the frequency ratio frequency ratio ηη to demonstrate that the dynamic amplificationdynamic amplification

depends only on η and the damping ξ. We do the same here. H then also depends only on η and ξ; 

the stiffness k serves at transforming the unit of the load amplitude, i.e. force, into the unit of the 

displacement, i.e. length. It must be possible to extract the dynamic amplification V1 and the 

phase shift φ from the complex transfer function. For this we need the time domain response.
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Time Domain ResponseTime Domain Response

tiev̂)t(v Ω=

)t(iep̂H)t(v α+Ψ+Ω=

tii eep̂H)t(v ΩΨ=
tiii eep̂eH)t(v ΩΨα=

tiep̂H)t(v Ω=

trial function

complex response in the time domain

introduce transfer function

substitute load amplitude

substitute 

transfer function

combine exponential terms
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Real Amplitude and PhaseReal Amplitude and Phase

αααα: phase of the complex transfer function

21

2

)HRe(

)HIm(
tan

η−

ξη
−==α

)H(Im)H(ReH 22 +=

Amplitude of the transfer function:

222 )2()1(k

1
H

ξη+η−
=
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Real OscillationReal Oscillation

)tsin(
)2()1(

1

k

p̂
)t(v

222
ϕ−Ψ+Ω

ξη+η−
=

21

2
tan

η−

ξη
+=ϕ

The real oscillation is identical to the imaginary sine part of the complex solution:

The sign of the phase angle ϕϕϕϕ is changed (φ = -α, tanφ = -tanα) to conform to the solution in 

Lecture 5:

)tsin(Vv)t(v 1stat ϕ−Ψ+Ω=

We can identify the quotient p/k as the static deformation and the factor with the root as the 

dynamic amplification V1. Our solution in the complex domain yields the same real 

displacement as the original solution in Lecture 5!
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FrequencyFrequency Domain Approach: Building BlocksDomain Approach: Building Blocks

Item 1: equation of motion for an arbitrary load:

)t(pvkvcvm =++ &&&

Item 2: solution for a complex harmonic load

p̂)i(Hv̂ Ω=

tiep̂)t(p Ω=

tiev̂)t(v Ω=

Item 4: FOURIER transformation

inverse transformation

∫
∞

∞−

Ω ΩΩ
π

= de)i(F
2

1
)t(f ti

direct transformation

∫
+∞

∞−

Ω−=Ω dte)t(f)i(F ti

Item 3: complex transfer function

222

2

)c()mk(

icmk
)i(H

Ω+Ω−

Ω−Ω−
=Ω
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Frequency Domain Approach:Frequency Domain Approach:

Derivation of the AlgorithmDerivation of the Algorithm

Step 1: FOURIER transformation of the right-hand side (load):

Step 2: solution for a single harmonic:

∫
∞

∞−

Ω ΩΩ
π

==++ de)i(P
2

1
)t(pvkvcvm ti

&&&

tiev̂)t(v Ω
Ω =)i(P)i(H)i(v̂ ΩΩ=Ω

Now the load consists of infinite 

number of harmonics whose 

amplitudes are given by the 

complex FOURIER transform of 

p(t). The complex displacement 

amplitude resulting from a 

harmonic load can be obtained via 

the complex mechanical transfer 

function H.
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Step 3: total solution by superposition:

Step 4: Interpretation of the solution as a FOURIER integral

∫∫
∞

∞−

Ω

∞

∞−

Ω Ω
π

=Ω
π

= dev̂
2

1
d)t(v

2

1
)t(v ti

∫∫
∞

∞−

Ω

∞

∞−

Ω ΩΩ
π

=ΩΩ
π

= de)i(v̂
2

1
de)i(V

2

1
)t(v titi

We assume that the system is linear, i.e. we 

have neither large displacements nor effects 

of material nonlinearity. Then the 

superposition principle holds: the solution 

for a sum of loads is identical to the sum of 

the individual solutions for a single load. 

This also holds for an integral since an 

integral is nothing else but an infinitely 

close spaced sum.

The amplitude of the single 

solution vΩ is identical to the 

FOURIER coefficient V for this 

specific frequency Ω
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)i(P)i(H)i(V ΩΩ=Ω

The FFOURIEROURIER transform of the responsetransform of the response can be calculated be multiplying the 

FFOURIEROURIER transform of the loadtransform of the load by the complex mechanical transfer functioncomplex mechanical transfer function. The 

convolution integral of the DUHAMEL integral in the TD approach the becomes a 

simple multiplicationsimple multiplication in the FD! The numerical effort to calculate V(iΩ) from a 

given P(iΩ) is negligible!

FD SolutionFD Solution

The TD solution v(t) can then be computed by an inverse Finverse FOURIEROURIER transformationtransformation

of V(iΩ). The FD approach is a general method for any type of loading. It only 

requires that damping is non-zero since otherwise the transfer function would 

become infinite for Ω = ω and that the system is linear.
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FlowFlow Chart Chart forfor thethe FD SolutionFD Solution

time domain:

p(t)
frequency domain:

P(iΩΩΩΩ)

frequency domain:

V(iΩΩΩΩ)

time domain:

v(t)

inverse FT

∫
∞

∞−

Ω ΩΩ
π

= de)i(V
2

1
)t(v ti

direct FT:

∫
+∞

∞−

Ω−=Ω dte)t(p)i(P ti

transfer function:

)i(P)i(H)i(V ΩΩ=Ω
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PracticalPractical ApplicationApplication: FFT: FFT

inverse transformation

∫
∞

∞−

Ω ΩΩ
π

= de)i(F
2

1
)t(f ti

direct transformation

∫
+∞

∞−

Ω−=Ω dte)t(f)i(F ti

An exact solution via an analytical solution of the FOURIER integrals is restricted to special cases 

where a specific load function is given. For arbitrary loads we need a general, i.e. a numerical 

approach. This approach assumes that the load is given by a discrete sample of pairs (t,p). This 

sample can be transformed into the FD via the FFT so that we obtain a discrete FOURIER transform 

whose values are only correct up to the NYQUIST frequency. For these discrete frequencies we 

compute the transfer function H and obtain the discrete FOURIER transform of the response by a 

simple multiplication. An inverse FFT yields the time domain response. The IFFT requires 

FOURIER coefficients for the entire frequency range, i.e. also frequencies beyond the NYQUIST

frequency up to the maximum frequency fmax. We compute these values by mirroring with respect 

to the NYQUIST frequency. We illustrate the process by a simple example.
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ExampleExample: : RectangularRectangular ImpulseImpulse

p(t) structurestructure
loadingloading

k = 1000.0 kN/m

m = 1.0 ton

ξξξξ = 2.0 %

k = 1000.0 kN/m

m = 1.0 ton

ξξξξ = 2.0 %

p(t)

t
T

F
-T

P
T

P

pmax = 1.0 kN

TP = 1.0 s

TF = variable

pmax = 1.0 kN

TP = 1.0 s

TF = variable

s/rad62.31
0.1

0.1000
==ω Hz03.5

2
f =

π

ω
= s20.0

f

1
T ==

dynamic properties:
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Reference SolutionReference Solution
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m
]

reference solution in the time domain

 

 

TD solution

static solution

We obtain a reference solution by a direct time integration 

with small steps so that the numerical error is negligible. 

The reference solution then is identical to the analytical one 

for practical purposes. 
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Dynamic BehaviourDynamic Behaviour

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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d
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p
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e
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t 
[m

m
]

reference solution in the time domain

 

 

TD solution

static solution

We have a transient impulsive loading. The load period TP is long with respect to the 

structural period so that the response contains a noticeable static part: we have a damped 

oscillation with the eigenfrequency of 5 Hz about the static deformation. The static 

deformation is 1.0 mm for the duration of the load impulse and zero afterwards. The 

dynamically amplified part of the vibration is dominated by a harmonic with 5 Hz.

First we take only 24 = 16 steps to illustrate the numerical procedure. For an arbitrarily 

chosen TF of 10 s we get a time step of ∆t = 10/15 = 0.67 s which results in a sampling 

frequency of fsample = 1.5 Hz, a mirror NYQUIST frequency of fny = 0.8 Hz and a frequency 

resolution of 0.1 Hz. It is clear that we will not be able to capture the dominant response 

frequency with this sampling frequency – we are only interested in studying the procedure 

per se.

Hz03.5
2

f =
π

ω
=

s20.0T =
5

2.0

0.1

T

TP ==
s00.1TP =
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FD Algorithm: FFT of the LoadFD Algorithm: FFT of the Load

0.0010.000000

0.008.333333

0.008.666667

0.008.000000

0.007.333333

0.006.666667

0.006.000000

0.005.333333

0.004.666667

0.004.000000

0.003.333333

0.002.666667

0.002.000000

0.001.333333
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1.000.000000

pt [s]

P(t)

FFT

0.023918

0.044194
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0.062500

0.057742

0.044194

0.023918
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-0.023918
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-0.062500
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0.0625000.400000
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0.1250000.000000

Re(P)F [Hz]

P(f)

FOURIER coefficients below 

the NYQUIST frequency, 

relevant data.

Conjugate complex mirror 

images, incorrect data.

We perform a FD analysis 

with 16 steps and TF = 10.0 s.
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FD Algorithm: Transfer FunctionFD Algorithm: Transfer Function
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FD Algorithm: IFFT of the DisplacementFD Algorithm: IFFT of the Displacement
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Visualization of the FD AlgorithmVisualization of the FD Algorithm
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Convergence TestConvergence Test
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An increase of the number of sampling points Nsample increases the sampling frequency fsample

and thereby the maximum frequency which can be captured by sampling the signal. The length 

of the signal Tsample controls the frequency resolution: a larger Tsample leads to a finer resolution 

of the frequency axis.

The best results are obtained by long samples with small time steps (i.e. a high sampling 

frequency). This results in large amounts of data. It does not matter as long as we treat systems 

with only few degrees of freedom, but it can become critical for larger problems. We test the 

algorithm by studying the quality of the results for varying values for Tsample and fsample.
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TTFF = 5.0 s, = 5.0 s, ∆∆f = 0.2 Hz, f = 0.2 Hz, 32 Points, 32 Points, ffnyny = 3.2 Hz= 3.2 Hz
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The dominant response frequency lies above the NYQUIST frequency. Therefore we are not able to capture the 

dynamics if the process and the FD solution captures only the static part of the vibration.
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TTFF = 5.0 s, = 5.0 s, ∆∆ff = 0.2 Hz, 64 Points, = 0.2 Hz, 64 Points, ffnyny = 6.4 Hz= 6.4 Hz
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Now the NYQUIST frequency is high enough to capture the dominant frequency. The FD solution is qualitatively 

correct, yet the amplitudes show unacceptably high errors.
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TTFF = 5.0 s, = 5.0 s, ∆∆ff = 0.2 Hz, 128 Points, = 0.2 Hz, 128 Points, ffnyny = 12.8 Hz= 12.8 Hz
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A further increase of the sampling frequency improves the results, in particular during the load phase. The free 

vibration after t = 1.0 s still shows larger deviations from the true solution.
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TTFF = 5.0 s, = 5.0 s, ∆∆ff = 0.2 Hz, 512 Points, = 0.2 Hz, 512 Points, ffnyny = 51.2 Hz= 51.2 Hz
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Now the results are good though a slight error still persists which can be perceived with the naked eye.
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TTFF = 5.0 s, = 5.0 s, ∆∆ff = 0.2 Hz, 1024 Points, = 0.2 Hz, 1024 Points, ffnyny = 102.4 Hz= 102.4 Hz
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We have convergence with 1024 points. The solution shows only small deviations. These, however, cannot be 

reduced further by further increasing the sampling frequency.
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TF = 20.0 s, TF = 20.0 s, ∆∆ff = 0.05 Hz, 4096 Points, = 0.05 Hz, 4096 Points, ffnyny = 102.4 Hz= 102.4 Hz
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Instead of increasing the sampling frequency we refine the frequency resolution by quadrupling the sample 

length. To keep fsample constant, we also have to quadruple Nsample.  Now the FD and TD solutions are virtually 

identical and we can conclude that the FD approach is different but equivalent to the TD approach.
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DiscussionDiscussion

We have seen that the frequency domain analysis yields the same time response as a time 

domain computation. Since we perform both methods numerically, some deviations may be 

observed due to numerical errors.

In the TD approach it was the size of the time step ∆t which controlled the quality of the 

solution. We go forward from one time step to the next one, we can stop at any point, and take 

up the analysis from that point if further information beyond that point is needed. In a FD 

analysis the situation is more involved. We have two parameterstwo parameters to observe:

The total length total length TTtottot of the analysis has to be fixed beforehand. We get the total response from 

the IFFT and it is not possible to obtain the response beyond that point, unless we repeat the 

analysis from scratch with a larger Ttot. The choice of Ttot does not only fix the time range of 

the response, it also fixes the frequency resolution which in turn influences the quality of the 

results so that Ttot influence the response also for time before Ttot.

The time step time step ∆∆tt controls the maximum frequency which can be captured. We have seen that 

∆t must be chosen such that the corresponding NYQUIST frequency lies beyond the maximum 

relevant frequency which is determined by the highest mode expected to be excited and the 

highest load frequency to be represented.

The FD approach not only represents an alternative to the TD analysis, it also allows us to 

treat problems which cannot be dealt with in the TD: frequencyfrequency--dependent structural dependent structural 

propertiesproperties.
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FrequencyFrequency--Dependent Structural PropertiesDependent Structural Properties

Our problems have hitherto one thing in common: the structural properties mass, damping 

and stiffness were fixed values. In particular did the structural properties not depend on the 

frequency of the response. That seemed natural to us and we did not question the fact that we 

could use the numerical model, e.g. an FE-model, from the static analysis also for the dynamic 

simulation. There are cases, however, where that is not correct, where properties do depend on 

the frequency.

Frequency-dependent damping. A liquid damper, e.g., acts as a damping device because the 

liquid within it is excited to sloshing waves which dissipate energy by their motion. The 

forming of waves, the size of the wave amplitudes, and the question whether the waves break 

or not depends on the ratio of the eigenfrequencies of the liquid body and the frequency of the 

motion of the damper. If the damper oscillates with very low or very high frequency, only 

small waves are formed and the damping is low.

Frequency-dependent stiffness. A frequency-dependent stiffness might be encountered in 

geotechnics. Soil is an aggregate of different constituents with pores and water whose 

combination yields the macroscopically observable deformability, i.e. the resulting stiffness. 

The complex relationship between these constituents results in a soil stiffness which depends on 

the frequency of the soil vibration.
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How to Capture FrequencyHow to Capture Frequency--Dependent PropertiesDependent Properties

In a TD approach it is, as a matter of principle, not possible to capture frequency-dependent 

structural properties – the frequency of the response does not enter anywhere into the 

analysis. We might later, after the results have been computed, find the frequency distribution 

of the response by an FFT of the time history but that is just post-processing.
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frequency-dependent transfer function

damping constant c

frequency f

manufacturer:

damping as a function of f

It is the nature of the FD approach to be formulated 

in terms of frequencies. The transfer function H 

describes the frequency-dependent flexibility, where 

the dependency on the frequency is caused by mass 

and damping effects. If also damping or stiffness are 

given as functions of f or Ω, then we would simply 

introduce these functions into H, as shown below. 

Each harmonic in the response would then be 

calculated with its own stiffness or damping.
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Storage Requirements I: TimeStorage Requirements I: Time--Stepping MethodsStepping Methods

start
0

step
0

step
1

step
2

step
3

time-stepping procedure

In a time stepping procedure we need basically three sets of data: 

• structural data: K, M, C, Keff,

• “now” data: Peff, Vnow

• “old” data:  

The “old” data comprise n previous steps for an n-step algorithm. The most widely-used 

NEWMARK algorithm is a 1-step algorithm. All results farther back than one step can be safely 

forgotten by the program once they have been written to disc. The storage requirement does 

therefore not depend on the length of the analysis. For an SDOF problem NEWMARK would 

require just 9 values.

oldold,old VV,V &&&
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Storage Requirements II: FD MethodStorage Requirements II: FD Method

The FFT or IFFT algorithms require the entire signal as argument and yield the entire transformed 

signal as output argument. Even if we by optimized programming re-use the same storage segment 

by overwriting obsolete information, we would still need one entire complex signal. It would require 

2·Nstep values (Nstep = 1024, 2048, etc). Thus the storage requirement depends on the length of the 

analysis. For a system with Ndof degrees of freedom we would have not a single transfer function but 

a fully populated transfer matrix with each matrix element being a function of Ω. The storage space 

would quickly explode and a direct modelling in frequency space would be impractical. Then a 

transformation into modal space would decouple the modes and we could treat each mode separately 

in the FD, without having to have the entire transfer matrix in RAM. The modal approach requires 

linearity, but that constitutes no further restriction since an FD method is restricted to linear 

problems anyway.

FD method

FFT IFFTH

TD TDFD
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Limitation of FD ApproachesLimitation of FD Approaches

The FD approach calculates the response for each harmonic or frequency separately and 

synthesizes the time response by a superposition of all frequency contributions. Therefore the 

superposition principlesuperposition principle must hold, i.e. the structure must behave linearlystructure must behave linearly!

Sources of structural nonlinearity might be large displacementslarge displacements (geometrical nonlinearity) or 

inelastic behaviourinelastic behaviour (physical nonlinearity). In these cases the proportionality between load and 

displacement is lost and the superposition principle does not hold. For structurally nonlinear 

problems we have the phenomenon that the stiffness becomes a function of the displacement 

history and thereby of time.

That effect can be captured in a TD approach as time appears explicitly in the time stepping 

algorithm. Special steps must be taken, however, to account for the nonlinearity. We will not 

delve further into this – that is the topic of the lecture series on “Nonlinear Problems in 

Structural Engineering”.

An FD approach, however, does not allow us to capture nonlinear effects, which restricts its 

application to linear problems.


